SATELLITE PATH IN SPACE

Assumptions:

- 1. The satellite and earth are symmetric, spherical and therefore may be treated as point masses.
- 2. No forces other than their gravitational forces act on the system.
- 3. The mass of the earth is much greater than that of the satellite.

Equation of motion may be formulated:

$$F = -\frac{GM_E m \hat{r}}{r^2} \quad , \qquad F = m\frac{d^2 r}{dt^2} \hat{r}$$

$$\therefore -\frac{\mu \hat{r}}{r^2} = \frac{d^2r}{dt^2} \hat{r} \rightarrow \frac{1}{r} \frac{d^2r}{dt^2} + \frac{\mu r}{r^3} = 0$$

Taking
$$r \mathbf{X}$$
 with each term $\Rightarrow r \times \frac{d^2 r}{dt^2} = 0$

But
$$\frac{d}{dt}[r \times \frac{dr}{dt}] = \frac{dr}{dt} \times \frac{dr}{dt} + r \times \frac{d^2r}{dt^2}$$

Dr. M. M. Dawoud

$$\therefore \frac{d}{dt} \left[r \times \frac{dr}{dt} \right] = 0 \quad \text{or} \quad r \times \frac{dr}{dt} = h = \text{Orbital angular}$$
momentum.

Orbital angular momentum can only be constant if the orbit lies in a plane.

To simplify the analysis, we use the orbital plane co-ordinate system:

Using the rectangular to polar transformation, we obtain the equation relating r_o and φ_o

$$r_{o} = \frac{1}{\frac{\mu}{h^{2}} + C \cos(\phi_{o} - \theta_{o})} = \frac{(\frac{h^{2}}{\mu})}{1 + (\frac{h^{2}}{\mu})C \cos(\phi_{o} - \theta_{o})}$$

C and θo are constants.

$$r_o = \frac{p}{1 + e\cos(\phi_o - \theta_o)}$$

Where $0 \le e < 1$ for elliptical path. The path is circular if e=0.

e is the eccentricity and is given by $e = \frac{h^2C}{\mu}$ and $p = \frac{h^2}{\mu}$.

THE ORBIT DESCRIPTION:

 Θ o is taken = 0. So that xo coincides with the major axis.

$$r_o = \frac{p}{1 + e \cos \phi_o}$$

$$a = \frac{p}{1 - e^2}$$
 and $b = a(1 - e^2)^{1/2}$

eccentricity
$$e = \sqrt{1 - (\frac{b}{a})^2}$$

SATELLITE PERIOD:

$$T^2 = \frac{4\pi^2 a^3}{\mu}$$

We may use this expression to calculate the radius of a geosynchronous circular orbit.

If
$$T = 86,400 \text{ Se.} \rightarrow a = 42,241.558 \text{ Km.}$$

A geo-synchronous orbit that lies in the earth's equatorial plane (having zero inclination) is geo-stationary.

For a satellite in a circular orbit around the earth, we have:

$$T^2 = \frac{4\pi^2 (R_E + h)^3}{\mu}$$

Where R_E is the earth's radius & h is the satellite altitude.

LOCATING THE SATELLITE IN THE ORBIT

$$r_o = \frac{p}{1 + e \cos \phi_o} = \frac{a(1 - e^2)}{1 + e \cos \phi_o}$$

 ϕ_o is measured from the x_o axis and is called the $\it true\ anomaly$.

The rectangular co-ordinates of the satellite are given by:

$$x_o = r_o \cos \phi_o$$
 and $y_o = r_o \sin \phi_o$

The satellite average angular velocity is given by:

$$\eta = \frac{2\pi}{T} = \sqrt{\frac{\mu}{a^3}}$$
 The time required for the satellite moving with this angular velocity to go around any circle is T sec.

$$v^{2} = \left(\frac{dx_{o}}{dt}\right)^{2} + \left(\frac{dy_{o}}{dt}\right)^{2} = \left(\frac{dr_{o}}{dt}\right)^{2} + r_{o}^{2} \left(\frac{d\phi_{o}}{dt}\right)^{2}$$

It can be shown that $v^2 = (\frac{\mu}{a})(\frac{2a}{r_o} - 1)$

We also had :
$$r_o^2 \left(\frac{d\phi_o}{dt}\right)^2 = \frac{h^2}{r_o^2} = \frac{\mu p}{r_o^2} = \frac{\mu a(1-e^2)}{r_o^2}$$

$$\therefore (\frac{\mu}{a})(\frac{2a}{r_o} - 1) = (\frac{dr_o}{dt})^2 + (\frac{\mu a}{r_o^2})(1 - e^2)$$

and
$$\frac{dr_o}{dt} = \left\{ \left(\frac{\mu}{ar_o^2} \right) \left[a^2 e^2 - (a - r_o)^2 \right] \right\}^{\frac{1}{2}}$$

Solving for *dt* and multiplying by the mean angular velocity we get :

$$\eta dt = \left(\frac{r_o}{a}\right) \frac{dr_o}{\left[a^2 e^2 - (a - r_o)^2\right]^{\frac{1}{2}}}$$

Angle E is called eccentric anomaly and is related to the radius r_o by :

$$r_o = a - ae \cos E$$
 \rightarrow $a - r_o = ae \cos E$

$$\therefore \eta dt = (1 - e \cos E) dE$$

If t_p is the time of perigee, then integrating the last equation, we get:

$$\eta(t-t_p) = E - e \sin E$$

$$\eta(t-t_p) \implies M$$
 called the mean anomaly.

 ϕ_{α} is the true anomaly.

Provided that we know time of perigee (t_p) , the eccentricity(e), and semimajor axis(a), then we have all the equations to determine the coordinates of the satellite in the orbital plane:

PROCEDURE:

1. Calculate the average angular velocity from

$$\eta = \frac{2\pi}{T} = \sqrt{\frac{\mu}{a^3}}$$

2. Calculate the mean anomaly from
$$M = \eta (t - t_p)$$

3. Find the eccentric anomaly from
$$M = E - e \sin E$$

4. Find
$$r_o$$
 from $a - r_o = ae \cos E$

5. Find
$$\phi_0$$
 from
$$r_0 = \frac{A(1-e^2)}{1+e\cos\phi_0}$$

6. x_o and y_o can be found from

$$x_o = r_o \cos \phi_o$$
 and $y_o = r_o \sin \phi_o$

Dr. M. M. Dawoud

LOCATING THE SATELLITE WITH RESPECT TO THE **EARTH**

 x_i , y_i , and z_i

Geocentric equatorial co-ordinate system.

 x_o , y_o , and z_o Orbital plane co-ordinate system.

 x_r , y_r , and z_r Rotating co-ordinate system.

The geocentric equatorial system

 Ω is the right ascension of the ascending node. $\omega \text{ is the argument of perigee in the orbital plane.}$