

- Introduction to Digital Video
- Basic Compression Techniques
- Still Image Compression Techniques JPEG
- Video Compression

Introduction to Digital Video

- Video is a stream of data composed of discrete frames, containing both audio and pictures
- Continuous motion produced at a frame rate of 15 fps or higher
- Traditional movies run at 24 fps
- TV standard in USA (NTSC) uses ≈ 30 fps

Main reasons for compression of digital video:

- a) large storage requirement (a 30 minute video may require 50 GB of storage!!!)
- b) limited network bandwidth for real time video transmission

- Quality
- •Compression Rate
- Complexity
- •Delay

- Compression is a process where a collection of algorithms, and techniques replace the original pixel-related information with more compact mathematical description
- Two basic types of compression are *lossless* and *lossy*

Lossless vs. Lossy Compression

- In lossless compression, data is not altered or lost in the process of compression or decompression
- Some examples of lossless standards are:
 - Run-Length Encoding
 - Dynamic Pattern Substitution Lampel-Ziv Encoding
 - Huffman Encoding
- Lossy compression is used for compressing audio, pictures, video
- Some examples are:
 - JPEG
 - MPEG
 - H.261 (Px64) Video Coding Algorithm

- Simplest and earliest data compression scheme developed
- Sampled images and audio and video data streams often contain sequences of identical bytes
- by replacing these sequences with the byte pattern to be repeated and providing the number of its occurrence, data can be reduced substantially

- When we have no prior knowledge of the sequences of symbols occurring frequently
- While encoding the stream, a code table must be constructed

Lempel-Ziv Encoding

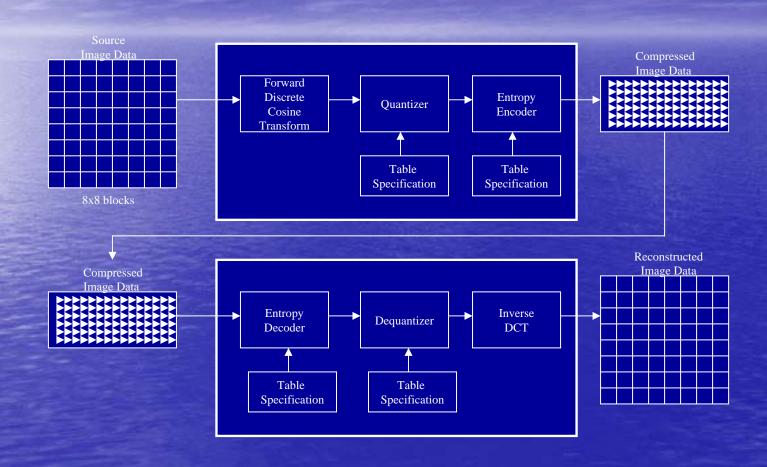
- The basic idea is never to copy a sequence of bytes to the output stream that the encoder has seen before
- This encoding is used in the UNIX compress utility

Algorithm:

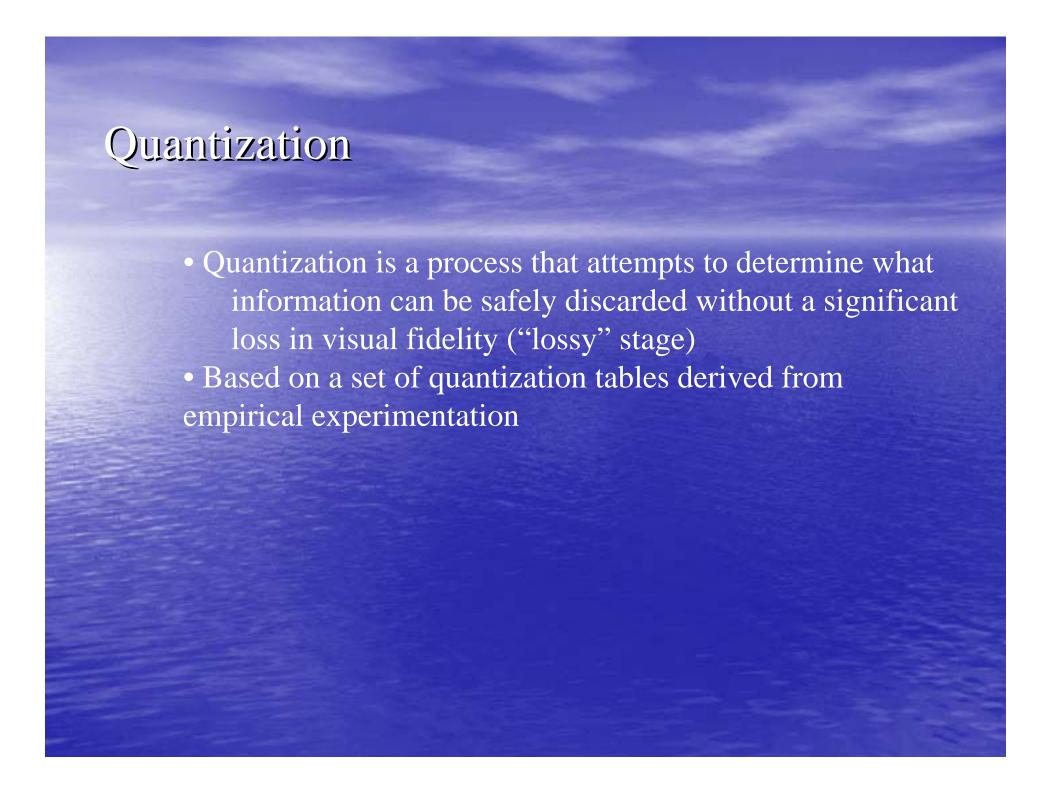
- 1. Initialize the code table with the elements of the alphabet, one entry for each character.
- 2. Initialize the scan window as empty: [].
- 3. Accept the next chracter K from the input stream and concatenate it with the scan window : [w]k.
- 4. Do we have an entry for [w]k in the code table?.
 - -If yes, integrate K into the scan window : w1 := [wK] and goto 3.
 - -If no, add [w]K as a new entry to the code table ,write the index of [w] to the output stream,set [w] :=[K] and goto 3.
- 5. When the end of the input stream is reached process [w] from left to right, choosing the longest possible substrings from the code.

- David Huffman proposed an algorithm for constructing a variable-length code, an Optimal algorithm
- Winzip the most popular compression utility uses Huffman Algorithm

Still Image Compression - JPEG


- Defined by Joint Photographic Experts Group
- Released as an ISO standard for still color and gray-scale images
- Provides four modes of operation:
 - Sequential (each pixel is traversed only once)
 - progressive (image gets progressively sharper)
 - Hierarchical (image compressed to multiple resolutions)
 - lossless (full detail at selected resolution)

Three levels of definition:


- Baseline system (every codec must implement it)
- Extended system (methods to extend the baseline system)
- Special lossless function (ensures lossless compression/decompression)

Sequential JPEG Encoder and Decoder

Benefits Provided by DCT

- DCT is proven to be optimal transform for large classes of images
- DCT is an orthogonal transform: it allows conversion of the spatial representation an 8x8image to the frequency domain therefore reducing the number of data points
- DCT coefficients are easily quantized to achieve good compression
- DCT algorithm is efficient and easy to implement
- DCT algorithm is symmetrical

Video Compression

Utilizes two basic compression techniques:

- Interframe compression
 - compression between frames
 - designed to minimize data redundancy in successive pictures(Temporal redundancy)
- Intraframe compression
 - occurs within individual frames
 - designed to minimize the duplication of data in each picture(Spatial Redundancy)

Classification of Scalable Video Compression Techniques

- DCT-based schemes
 - MPEG1
 - MPEG2
 - H.261
 - H.263
- Wavelet/sub-band
- Fractal-based
- Image segmentation/region based
 - MPEG4

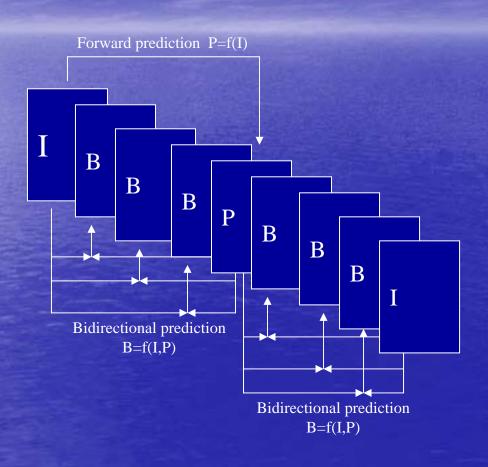
Various MPEG Standards

- MPEG-1
 - 320x240 full-motion video
 - -1.5 Mb/s
- MPEG-2
 - higher resolution and transmission rate 3-15Mb/s
 - defines different levels (profiles) for scalability
- MPEG-4
 - full-motion video at low bitrate (9-40 Kbps)
 - intended for interactive multimedia, video telephony

MPEG Compression Standards

Implements both intraframe and interframe coding

- •Intraframe(Spatial Redundancy) is DCT-based and very similar to JPEG
- Interframe(Temporal Redundancy) uses block-based motion compensation
 - utilized for reducing temporal redundancy

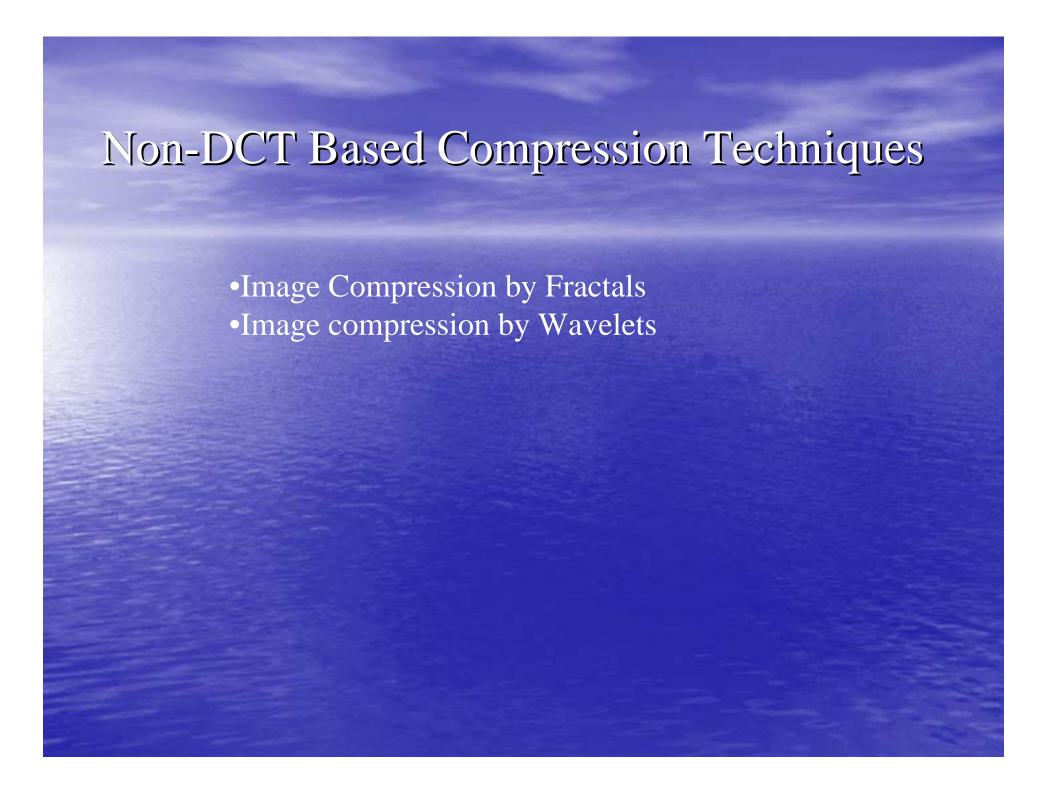


Three types of pictures:

- Intrapictures (I)
- Unidirectional predicted pictures (P)
- Bidirectional predicted pictures (B)

Grouped together (typically 12 pictures) in GOPs

Motion Compression for Coding MPEG



- H.261 was designed for datarates which are multiples of 64Kbit/s, and is sometimes called p x 64Kbit/s (p is in the range 1-30).
- •These datarates suit ISDN lines, for which this video codec was designed for
- Intended for videophone and video conferencing systems

H.263 Standard

- The development of modems allowing transmission in the range of 28-33 kbps paved the way for the development of an improved version of H.261
- It was designed for low bitrate communication, however this limitation has now been removed
- It is expected that H.263 will replace H.261

