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ABSTRACT 
In this paper, a sophisticated adaptive seismic compression 
method is presented based on wavelet shrinkage. Our approach 
combines a time-scale transform with an adaptive non-linear 
statistical method. First, a discrete 2-D biorthogonal Discrete 
Wavelet Transform (DWT) is applied to the multi-channel 
seismic signals to generate a sparse multiresolution (subband) 
decomposition. Compression is then achieved by shrinking the 
detail wavelet coefficients using a scale-dependent non-linear 
soft-thresholding rule. The adaptive scale-dependent thresholds 
are determined by minimizing the Stein’s Unbiased Risk 
Estimate (SURE). The proposed compression procedure is tested 
on marine seismic data from the Midyan basin (Red Sea, Saudi 
Arabia). 

1. INTRODUCTION 
Seismic compression is a key technology for managing seismic 
data in a world of ever increasing data volumes to maintain 
productivity without compromising interpretation results. By 
storing data in a format that requires less space than the original 
data volume, seismic compression provides greater flexibility in 
managing local or remote server disk space as well as reducing 
network traffic. Seismic compression not only enables 
explorationists to maximize the value of the information 
technology infrastructure, but it encourages innovative 
interpretation workflow to leverage the vast information content 
in massive seismic data. Compression thus helps in maintaining 
or exceeding current productivity levels. Recently, seismic 
compression has benefited from the advent of wavelets [ 11, 
which offer mathematical constructions with a great potential in 
statistical methodology [2]. Wavelet transforms have been 
applied extensively in diverse applications including data 
compression and denoising, image analysis, economics and 
statistics [3]. 

In this paper, a sophisticated wavelet-based compression 
technique is proposed. Both the transform and the compression 
stages are matched up in view to improving the overall 
performance. The rationale of our approach is first to generate a 
(near)-sparse representation of the data in the wavelet domain 
then to threshold an important part of the coefficients without 
losing substantial information. In order to exploit the multi- 
channel seismic data correlation in space and time directions, 
a 2-D biorthogonal DWT is used. For seismic interpretation, the 
visual aspect of seismic signals is of utmost importance. This 
factor is taken into account by judiciously selecting both the 
wavelets and the thresholding procedure. Thus, a DWT using 
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long wavelet filters from the Cohen-Duubechies-Feauveau 
(CDF) class [4] is intimately associated with a non-linear smooth 
operator, namely wavelet shrinkage. Biorthogonal wavelets offer 
a good trade-off between the support size, the number of 
vanishing moments and regularity. In other words, the DWT is 
computed efficiently while preventing the appearance of artifacts 
in the reconstructed data. In addition, the sparsity of the 
multiresolution decomposition is best exploited by wavelet 
shrinkage. The latter consists of applying a soft-thresholding rule 
to all the wavelet coefficients but those belonging to the lowest 
resolution subband. Indeed, the latter is merely a smooth scaled 
version of the input data and carries the essence of the data. 
Moreover, it has coefficients of much smaller magnitude than 
those of the detail subbands do. Thus, this makes its contribution 
to the compression gain marginal. The values of the scale- 
dependent thresholds are determined by minimizing the SURE 
[5][6]. The proposed compression procedure is tested on marine 
seismic data from the Midyan basin (Red Sea, Saudi Arabia) [7]. 

2. MULTICHANNEL SEISMIC SIGNALS 
Oil and gas are usually buried deep within the earth, often miles 
below the surface. Most of the easy or shallow oil has been 
found. A number of exploration methods are available but in 
general only the modem seismic reflection method comes close 
to providing both the ability to see down to great depths and to 
see the details of the subsurface needed to locate many 
hydrocarbons [8]. Seismic data stem from a multiscale non-linear 
distributed parameters remote system, i.e. the earth. In a typical 
scenario, a spatially distributed acoustical signal is generated by 
a source (e.g. dynamite) located at the surface of the earth. The 
generated waves propagate downward, undergo reflection at 
contacts with different acoustic impedance, and are recorded by 
an array of seismometers at the surface. This provides the multi- 
channels discrete seismic signals that are mapped into 
representations of the earth’s interior properties. The underlying 
complex process is referred to as seismic imaging. The latter is 
intended to find earth models that explain (or best fit) seismic 
observations. Seismic signals are commonly displayed using a 
variable-area and/or a variable-density mode [8]. 

3. MULTIRESOLUTION 
DECOMPOSITION 

3.1 2-D Wavelet Bases 

There are two different ways to build a wavelet basis for a 2-D 
space, say t and x. The standard dyadic construction consists of 
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all possible tensor products of 1-D wavelet and scaling basis 
functions defined respectively as: 

However, despite its simplicity, the construction that requires 
different scale indices for each direction, does not benefit from 
the recursive Mallar algorithm 191. Indeed, for an m x m matrix 
data the standard dyadic decomposition requires 4(mz-m) 
assignment operations against 8/3(mZ-1) only for the nonstandard 
one [lo]. Consequently, in the sequel the nonstandard dyadic 2-D 
decomposition is adopted. It consists of defining a 2-D scaling 
function, using a unique scale index j as: 

q jkkV(t9x) =q * (')q (2)  ~k jk  
and three 2-D wavelet functions at each scale given by: 

j - 
yr " ( t ,  x) = 2 2  qyr (2 j t  - k , 2 j x  - k ' )  

jkk' 

j - v H j k k , ( t , x ) = 2 2 ~ q ( 2 J t - k , 2 J x - k ' )  

These three anisotropic wavelets extract matrix data details at 
different scales and orientations, whereas the scaling function 
yields a smoothed low-resolution version of the input data. 
Indeed, starting at scale j ,  the multiresolution decomposition 
yields four double-scaled half-resolution panels at scale j -1 .  One 
of them represents a smoothed version of the data while the 
remaining ones contain detail wavelet coefficients corresponding 
to the (yrs @, yf/ wavelet functions that are respectively 
oriented vertically, horizontally and diagonally. The result of the 
nonstandard dyadic 2-D DWT is usually displayed in four panels 
as in Fig.1. 

1 Iteration on low-low subband 1 
L,LJ L,HJ FHTH.1 HrLJ H,HJ 

cpv w 

Figure 1. Nonstandard dyadic 2-D wavelet 
multiresolution decomposition. L and H stand for low- 
and high-pass wavelet filters, and the subscripts r and c 
stand for row and column respectively 

3.2 Biorthogonal Wavelet Bases 

There are three main categories of wavelet bases, namely the 
orthogonal, the semi-orthogonal and the biorthogonal. Limiting 
ourselves to orthogonal wavelet bases can be overly restrictive 
because except for the Haar basis, there are no other bases, 
which are compactly supported and symmetric. The relaxation of 
orthogonality constraint has many benefits that improve the 
performance of the wavelet transform while still being 
implemented with the Mallut algorithm. In particular, 
biorthogonal wavelets offer a good trade-off between the support 
size, the number of vanishing moments and regularity. In term of 
digital filters, the biorthogonal transform uses different Finite 
Impulse Response (FIR) wavelet filters in the decomposition and 
reconstruction stages. This provides more flexibility in the design 
of the transform and its inverse [ll]. Moreover, FIR filters are 
preferred because they guarantee a linear phase, which is a very 
desirable property that prevents from the appearance of artifacts 
in the reconstructed data. Therefore, the biorthogonal transform 
uses dual wavelet and dual scaling functions related to the primal 
ones by: 

(4) 

In this contribution long biorthogonal wavelets filters of the CDF 
class are used [4]. 

3.3 Nonstandard Dyadic 2-D Decomposition 

The extension to 2-D separable biorthogonal bases is 
straightforward. Indeed, by alternating the 1-D wavelet filtering 
operations on rows,and columns a 2-D dyadic nonstandard 
decomposition is generated. This scheme is implemented with a 
two-channel filter bank [11], where the low-pass and high-pass 
filters represent the scaling and the wavelet functions 
respectively. First, a one step low pass (L) and high pass (H) 
filtering is performed on each row of the matrix I .  Next, the same 
filters are applied to each column of the resulting matrix. The 
whole process is applied recursively to the quadrant containing 
averages in both directions, i.e. LJJ panel. The resulting 
recursive decomposition is illustrated by Fig.1. and the 
implementation of the one-stage 2-D DWT is depicted by Fig.2. 

Figure 2.One-stage non-standard 2-D DWT 
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4. WAVELET SHRINKAGE 

4.1 Motivation 

Wavelet compression is best understood from an approximation 
viewpoint. In a wavelet decomposition, each wavelet picks up 
information about the data at a given location k and at a given 
resolution or scale j. Thus, the wavelet transform allows us to 
focus on the most relevant part of the data provided the wavelet 
bases fit the input data. Consequently, the resulting wavelet 
coefficients drop off rapidly yielding a (near)-sparse data 
representation. This is also known as energy compaction 
property. Wavelet thresholding constitutes thus a natural choice 
to perform compression. It is a simple yet a very efficient 
procedure for keeping the most important coefficients that will be 
used in reconstruction. An intuitive way to achieving 
thresholding consists of applying a keep-or-kill rule referred to as 
hard-thresholding. However, a sof-thresholding is preferred 
because of various advantages. From a visual point of view, the 
reconstructed data offer a more pleasant aspect, and do not 
exhibit visible artifacts. This is crucial in the case of seismic data 
interpretation. From a statistical point of view, soft-thresolding 
uses a continuous function, leading to simple data driven 
selection of the thresholds. In fact, the selection of the thresholds 
is a very delicate and important statistical problem. On one hand, 
killing too many wavelet coefficients may lead to an important 
bias in the reconstructed data. On the other hand, small 
thresholds lead to a poor compression gain. Thus, threshold 
selection should strike the balance between closeness to fit 
between the original and the reconstructed data and the degree of 
sparsity of the wavelet coefficients. We propose to achieve 
compression through an adaptive soft-thresholding procedure, 
referred to as wavelet shrinkage. The selection of the optimal 
threshold for all the scales but the coarsest one is accomplished 
by minimizing the SURE. The resulting nonlinear thresholding 
operator is called SureShrink [5] .  

4.2 SURE Principle 

SURE has been initiated by Stein for mean estimation of a 
multivariate normal distribution [ 121 and has been successfully 
applied for function smoothing by Donoho [5 ] .  The foundation of 
the SURE principle is based on the fact that for nearly arbitrary 
nonlinear biased estimator, the loss or risk can be estimated 
unbiasedly. In the sequel, we outline the SURE principle for the 
general case then in the next paragraph we show how to derive 
the SureShrink operator. 

Consider an empirical data vector y of dimension N given by 

yi  = f i  + e i ,  i=O,l, ..., N - 1  ( 5 )  

where are samples of the deterministic function f and e is 
Gaussian white noise with independent identical distribution 
( i i d )  N(0,a). 

The objective is to find the best estimate of the functionfin the 
mean square sense by minimizing the Mean Square Error (MSE) 
risk defined as, 

However, the main drawback of the MSE risk is that in practice, 
it can never be computed exactly because it relies on the 
unknown exact value of the function f. Thus in practical 
situations this MSE has to be estimated. The SURE principle 
stipulates that if we consider the following estimate for the 
unknown functionf, 

where g(y) is a weakly differentiable function from R" to R", 
then an unbiased estimator for the MSE risk is the SURE defined 
as [ 121: 

where V is the vector differential operator of first partial 
derivatives , i.e., 

(9) 

4.3 Adaptive Wavelet Shrinkage with Sureshrink 

There are two main classes of wavelet shrinkage regarding 
whether the threshold is single and global or scale-dependent and 
adaptive. Our approach consists of deriving a scale-dependent 
threshold 4 according to the following soft-thresholding rule: 

For a given detail subband at resolution j ,  the shrinkage operator 
gk(d) kills all those coefficients below the threshold hj and pulls 
towards the origin the surviving ones by an amount equals to the 
threshold. The different scale-dependent thresholds stem from 
the minimization of the SURE, i.e., 

where tlie SURE for a soft-threshold estimator is given by [5], 

2 1  - I  

R y  = 2' - 211 I d: IS Aj } + C min{ I d: I, 1')' ( 1 2 )  
i=O 

Note that the underlying optimization problem is straightforward 
and the computational effort is of order 2 log(2) as a function of 
the subband size 2 [5]. 
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5. EXPERIMENTAL RESULTS 
A migrated marine seismic profile from the Midyan basin in the 
Red Sea is used to demonstrate our adaptive seismic compression 
by wavelet shrinkage. The discrete 2-D seismic data consist of a 
collection of 2838 seismic signals (traces) of 2.5 seconds length 
each sampled at 4 milliseconds. The traces correspond to the 
Common MidPoints (CMP), i.e., successive reflection points 
midway between the different seismic source locations and the 
seismometers. The data can be regarded as a (626x2838) matrix 
of floats entries. The variable density display mode is used to 
represent the profile, which can be thought of as a transversal 
section of the prospected area along the seismic line. First we 
have applied a 2-D DWT with asymmetric long biorthogonal 
wavelet filters CDF(6,8) where the numbers of vanishing 
moments for the synthesis and analysis wavelets are 6 and 8 
respectively. The reader may be wondering why the 
reconstruction wavelet filters are shorter and have less vanishing 
moments than the decomposition ones. First note that this is 
made possible thanks to the flexibility of the biorthogonal 
wavelet transform. Second, the objectives of the decomposition 
and reconstruction stages differ. Indeed, the main concem of the 
wavelet decomposition is to pack the energy of the input data in 
fewer wavelet coefficients. The higher the number of vanishing 
moments is, the better the energy compaction would be. From the 
reconstruction side, we wish to use smooth wavelets to mask the 
errors introduced by the wavelet shrinkage and to get less 
annoying visual artifacts. Furthermore, the reconstruction time 
should be shorter than the decomposition one because, in 
practice, the data set is compressed once but may be 
decompressed several times. A three-level multiresolution 
decomposition has been performed yielding nine detail subbands 
and one low-resolution subband. The four subbands of the first 
level are displayed in Fig.3. 

Figure 3. First level nonstandard dyadic 2-D DWT 
multiresolution decomposition of the Midyan section 

Next, we have applied the Sureshrink operator to the nine details 
subbands. The experimental results are displayed in Fig.4. 
Though, almost 82% of the wavelet coefficients have been killed 
by shrinkage, 95% of the data energy is recovered in the 
reconstructed data. Furthermore, the difference section exhibits 
random noise. Thus, an appreciable filtering effect has also been 
produced by the compression. 

6. CONCLUSIONS 
In this work, a sophisticated adaptive seismic compression 
technique was presented. A time-scale transform was associated 
with a non-linear statistical method. A pair of different 
asymmetric biorthogonal wavelet filters was selected to achieve 
different targets for the compression and decompression 
processes. Analysis wavelets with more vanishing moments were 
used to ensure a maximum energy compaction of the input data. 
This made compression by thresholding a very natural and 
efficient means. Based on SURE, the scale-dependent thresholds 
were determined and then the Sureshrink operator was applied to 
each detail subband to kill insignificant coefficients. The 
experimental results show that the proposed approach does not 
introduces visible artifacts while achieving a relatively high 
compression gain. 
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Figure 4. Experimental results 
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