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Abstract. Regular region based segmentation approaches utilize color or 
intensity information to distinguish between different regions. The performance 
of such procedures is acceptable for man-made objects, since they mainly 
consist of regular shapes and smooth surfaces. Most natural objects such as 
mountains, trees or clouds on the other hand are typically formed of complex, 
rough and irregular surfaces in 3-D, which are transformed into textured regions 
on the 2-D image plane through the image formation process. If we want to 
segment or classify images of such surfaces in an automatic fashion, we need to 
find a way to capture the essence of their structure succinctly. This can be 
achieved by making use of the 3-D information in combination with the texture 
of the corresponding region on the image plane. One possible way to model this 
relationship is through fractal analysis, which has proven to be a good 
representation of natural objects. 

This paper is based on the work of Xu et al. [1]. The aim is to explain a way 
of efficiently representing natural objects by the use of the multi fractal 
spectrum (MFS), which is an extension of the regular fractal analysis. Section 1 
of this paper will present the concepts of image texture. Then section 2 will 
briefly introduce the fractal theory and section 3 will elaborate on the concept 
of fractal dimension (FD). Section 4 is the main part of the paper, which will 
explain the MFS as a robust and invariant texture descriptor. The final section 
will present the experimental results obtained by Xu et al. [1] and provide 
conclusions. 

Keywords: Image Texture, Fractal analysis, Fractal dimension (FD), Multi 
fractal spectrum (MFS), Bi-Lipschitz transformations. 

1   Image Texture 

Several image properties such as smoothness, coarseness, depth, regularity, etc. can 
be intuitively associated with textures. However there is no accepted formal definition 
for texture. Many researchers have described texture as a descriptor of the local 
brightness variation from pixel to pixel in a small neighbourhood around a central 
pixel. Alternatively, texture can be described as an attribute representing the spatial 
arrangement of the gray levels of the pixels in a region. Texture analysis has played 
an important role in many areas including medical imaging, remote sensing and 
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industrial inspection, and its tasks are mainly classification, segmentation, synthesis, 
compression and scene description. Human touch is a useful way of interpreting 
texture, since we naturally relate surface structure to touch. In that sense a texture can 
be rough, silky, bumpy, etc. 

Textures can be categorized into repetitive, stochastic, mixed and fractal patterns. 
Examples of that are illustrated in Fig. 1. Fig. 1(a) shows a repetitive texture, which is 
obtained by replicating a texture primitive (brick) in the image X and Y directions. 
Fig. 1(b) shows a stochastic texture, which is generated by sampling a random 
process. Fig. 1(c) illustrates that different combinations of texture types can be 
present in the same image. Fig. 1(d) shows a fractal texture, which will be introduced 
in further detail in section 2. 

A texture descriptor is a discriminant metric to quantify the perceived texture of a 
surface. A good descriptor should have the following properties: 

 
o Rich informative surface description 
o Spatial invariance to geometrical transformations 
o Illumination invariance 
o Efficient computation (especially for real time systems) 
 

 
 (a) Repetitive texture                              (b) Stochastic texture 

 

 
  (c ) Mixed texture                                                   (d) Fractal texture 

Fig. 1. Texture categories 



78 S.H. Abdul Jauwad and R. Ullah 

There are several techniques to obtain a descriptor for a textured image, which can 
be divided into two main categories. The first one follows a structured approach, 
which sees an image as a set of primitive texels in a regular or repeated pattern. This 
approach is particularly useful for describing artificial textures. The second one is a 
statistical approach, which computes a quantitative measure of the arrangement of the 
intensities in a region. In general this approach is easier to compute and is more 
widely used, since natural textures consist of irregular sub-elements. Popular 
techniques in this category are the gray level co-occurrence matrices, laws masks, 
autocorrelation coefficients and fractal analysis. The latter rather new technique will 
be discussed in the next section. 

2   Fractal Theory 

A fractal is a self-similar geometric shape, i.e. it is made up of reduced size copies of 
itself. Fractals are defined recursively and can be constructed in an iterative fashion. 
The roots of the fractal theory go back to the 17th century; however the mathematical 
concepts were developed one century later. The term fractal was coined by Benoit 
Mandelbrot in 1975 and was derived from the Latin word fractus, which means 
“broken” or “fractured”. A key property of fractals is that they comprise finite area, 
but have an infinitely long boundary. No small segment along the boundary of fractal 
is line-like and the distance between any two distinct points on the boundary is 
infinite. There are two classes of fractals, depending on the level of self-similarity. 
Exact self-similar fractals consist exclusively of exact copies of itself. On the other 
hand quasi self-similar fractals are made up of several structures that are repeated 
recursively. Two popular examples for the fractal classes are shown in Fig. 2. 

As mentioned earlier fractals are constructed iteratively. In order to illustrate this 
process iterations 0 to 4 of the Koch curve are shown in Fig. 3. The construction starts  
 

 
       (a) Koch curve                                                  (b) Mandelbrot set 

Fig. 2. Fractal classes 
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at iteration 0 with an equilateral triangle. Then in every iteration the middle third of 
every straight line segment is replaced by a pair of line segments that form an 
equilateral bump (inclination angles of 600 and 1200). If this process is repeated 
forever, the boundary will become infinitely long. The Koch curve is a good 
approximation of the physical formation of snowflakes. Another popular example is 
the Sierpinski triangle. 

 
              0                               1                            2                            3                             4 

Fig. 3. Koch curve: demonstration of fractal construction 

3   Fractal Dimension 

The fractal dimension (FD) is a key quantity in the field of fractal texture analysis. It 
is an indicator of how completely a fractal fills the surrounding space and it is also a 
measure of the irregularity of the point distribution of an object. The mathematical 
formulation for computing the FD of a point set E ∈ℜ is 

0

log ( , )
dim( ) lim

log

N E
E

δ

δ
δ→

=
−

                                                   (1) 

where δ is the measurement scale, ( , )N Eδ  is the number of copies of the original 

object when going to a smaller scale and dim( )E  is the fractal dimension of the point 

set. For eachδ , an object is measured in a way that ignores irregularities of size less 
thanδ . The fractal dimension is then obtained by observing how these measurements 
change as δ  approaches 0. One way to illustrate the measurement scale is to think of 
δ  as being the length of a ruler that is used to measure the boundary of the object in 
question. Fig. 4 shows an example of measuring the length of the coast line of Great 
Britain using rulers of decreasing sizes. As can be seen the smaller the ruler is, the 
more detail can be captured, i.e. the better the approximation of the coast line is. No 
matter at what scale we look at the coast line there will always be scalloping smaller 
than that scale. This means that the estimated length of the coast line increases as the 
ruler size decreases. Hence the length of the coast line (or in general the outline of an 
object) does not just depend on the length of the coast line itself, but also on the 
length of the measurement tool. In order to obtain a consistent measurement of the 
coast line, the notion of dimension must be generalized to include fractional 
dimensions. In this way the unique fractional power that yields consistent estimates of 
the object’s metric properties is that object’s fractal dimension (reason for the limit in 
Eqn. 1). 
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Fig. 4. Measuring the coast line of Great Britain using a ruler 

However when analysing image textures the theoretical way of computing the fractal 
dimension demonstrated above cannot be applied, since digital images are recorded at a 
finite resolution and it is not possible to go beyond single pixel resolution. That’s why in 
practice the so-called box-counting dimension is used. Fig. 5 shows the same example of 
measuring the coast line of Great Britain, using circular disks of decreasing radius r. In 
general the box-counting dimension is computed by covering the space with a mesh of 
boxes with side length r, called the r mesh boxes (r squares in 2-D) and then counting 
how many boxes are needed to cover the whole structure. 

 

 

Fig. 5. Measuring the coast line of Great Britain using circular disks 
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3.1   Computation of the FD 

In order to illustrate the concept of FD more clearly, we will show the computation of 
the FD of the primitive objects that cover up the whole 1-D, 2-D and 3-D space 
respectively and in contrast to that the FD of a real fractal. Fig. 6-8 have the following 
structure: the left subfigure shows the original object, the right one shows the result 
when doubling its extent (scaling factor k of 2) in all dimensions. This scaling factor k 
determines the number of replications of the object in one dimension. The 
measurement scale δ  on the other hand determines the reduction in length of the 
ruler. Since they describe the same concept in two opposite ways, their mathematical 

relation is
1

k
δ

= . In Fig. 6 it can be seen that the number of copies of the original 

object after the dilation is 2 and hence δ = 0.5. So the FD can be computed using 
Eqn. 1 as 
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     (a) Original line                                                   (b) Dilated line 

Fig. 6. Fractal dimension of a 1-D line 

Fig. 7 shows that the original square is replicated four times when both dimensions 
are doubled. So the number of copies N = 4. The measurement scale δ is still 0.5 and 
hence the FD can be computed as 
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         (a) Original square                                                   (b) Dilated square 

Fig. 7. Fractal dimension of a 2-D square 
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As can be seen in Fig. 8 the original cube is replicated eight times when all three 
dimensions are doubled and so the number of copies N = 8. The measurement scale 
did not change and hence the FD is as follows 

0
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δ

δ
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− −

 

From the examples given above we can conclude that regular geometrical objects 
 

o have an integer fractal dimension 
o have a fractal dimension which is equal to their topological dimension 

 
           (a) Original cube                                                      (b) Dilated cube 

Fig. 8. Fractal dimension of a 3-D cube 

As an example of the FD of a real fractal we show the Koch curve. The scaling 

factor k = 3, so δ = 
1

3
. As can be seen in Fig. 9 the number of copies of the original 

object (shown in black) is N = 4. So its fractal dimension can be computed as 

0
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In contrast to regular objects the fractal dimension of an irregular object is always a 
fractional number (hence the name fractal dimension). 

Another way of illustrating the concept of fractal dimension is to increase 
gradually the roughness of a 3-D plane from a completely smooth surface to a highly 
irregular one and observing how its FD changes (as shown in Fig. 10). The 3-D 
surface irregularities are projected as texture on the 2-D image plane through the 
image formation process. By computing the FD of the texture, we can see that it is 
directly proportional to the roughness of the corresponding surface: the higher the 
roughness, the higher the FD and vice versa. 
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Fig. 9. Fractal Dimension of the Koch Curve 

3.2   Fractal Dimension of Images 

Up till now we have only discussed how to compute the fractal dimension of differently 
shaped objects. In order to utilize the FD for texture analysis we need to extend the 
concept to the space of images. A crucial property of shapes is that for every point in 
space, we know if it belongs to the shape or not. Hence it is possible to compute its 
fractal dimension. However images consist of a dense matrix of RGB or intensity values. 
So a pre-processing step is necessary to binarize the images. Then the FD of the binary 
images can be computed, where white means that a pixel belongs to the shape (logical 
true) and black means that it does not (logical false). This binarization (or categorization) 
can be achieved in various ways, depending on the task at hand and the input image 
 

 
A: FD 2.0, B: FD 2.1, C: FD 2.5, E: FD 2.8 

Fig. 10. Surfaces of increasing fractal dimension 

≈ ≈ ≈ ≈
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class. In order to illustrate the concept we will start by simple thresholding. Fig. 11 shows 
the original color image of a tree and its binarized version obtained by thresholding the  

blue channel1. All pixels with blue channel intensities below 80 are set to white, the rest  
of the pixels are set to black. The binary version clearly shows the shape of the object of 
interest (tree) in relation to the background. 

 
 (a) Original tree image                                              (b) Binarized tree image 

Fig. 11. Binarization of an RGB image for computation of its FD 

Fig. 12 shows the fractal dimension of the binarized tree image from Fig. 11(b) as 
a function of the box size used to cover the shape. The first thing to observe is that the 
fractal dimension for a box size of 2000 pixels or more is 2, i.e. that the full image is 
covered by a single box and hence the FD corresponds to the topological dimension. 
But we know from Eqn. 1 that the FD is defined for the box size r going to zero. As 
the box size approaches zero, we get different values for the FD. Since an image is 
 

 

 
          (a) Number of boxes                                                    (b) Fractal dimension 

Fig. 12. Functions w.r.t. the box size of the tree image 

                                                           
1 The binary image just contains a centred, reduced size version of the original image, 

because it represents the most descriptive part of the tree shape. 
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recorded at a final resolution the minimum box size is one pixel (at the left border of 
the graph). The final FD is obtained by taking the average of the finite differences of 
the number of boxes with respect to the box size. For the tree image it is 
approximately 1.801 ± 0.06394. The FD can just be estimated, because of two 
reasons: firstly, the finite resolution of the image just allows for finite differencing 
and not for an analytical derivative and secondly, if the image size is not an integer 
power of 2, the boxcount2 function pads the remaining space with zeros (e.g. a 
320x200 image is padded to 512x512) and hence that region is not considered to be 
part of the shape. 

Fig. 13 shows the computation of the fractal dimension for a binary image that 
contains a fractal-like shape. We can observe that the line evolves differently w.r.t. 
the previous figure. 

 
         (a) Original fractal image                                (b) Fractal dimension 

Fig. 13. FD of a fractal gray scale image 

3.3   Issues with the FD 

The fractal dimension analysed up to now has several advantages. It is insensitive to 
image scaling, it is close to the human perception of surface roughness and it is a 
good representation of natural objects. But there are also two main drawbacks, 
namely that the FD just gives a single value for a texture and that different textures 
can have the same FD. Hence it is not a unique and very rich descriptor. A possible 
solution to overcome the mentioned limitations is the extension to the multi fractal 
spectrum (MFS), which will be covered in the following section. 

4   Multi Fractal Spectrum 

The MFS is a vector of the fractal dimensions of some categorization of the image. 
Here, a categorization is a way of creating binary sub images from the original image 

                                                           
2 A Matlab function. 
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using some thresholding criteria (as shown in the tree example in the previous 
section). A more general way to do this is intensity thresholding: divide the overall 
range (e.g. 0-255) in N bins, and for every bin compute a binary image by setting all 
the pixels in the bin to black and all others to white. In this way N binary images are 
obtained. Fig. 14 shows this process for a grass texture. 

 

      (a) Original Image                 (b) Thresholded between               (c) Thresholded between 
                                 100 and 120                                 80 and 100 

Fig. 14. Binarization of grass texture 

The computation of the MFS is a three step process, which is illustrated in Fig. 15. 
It consists of the following stages: 

 
I. Extract N binary images from the original image 
II. Compute the fractal dimension of all the binary images 
III. Concatenate all the computed FDs into one vector, called the Multi 

Fractal Spectrum 

 

Fig. 15. Overview of the FSM computation 

An important aspect of this process is the way how the categorization is achieved. 
The classical approach in the MFS literature (which was also followed in [1]) 
introduces a local density function for this task. It is also called Hölder exponent or 
local fractal dimension, since its formula resembles the one for computing the normal 
FD. The crucial difference is that instead of having the number of boxes in the 
numerator, a measurement function is used. 
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4.1   Local Density Function 

The local density function for an image pixel x is defined as: 

0

log ( ( , ))
d( ) lim

logr

B x r
x

r

μ
→

=                                                  (2) 

where d( )x is the local density at the image pixel x; x is a two element vector 

containing the (x, y) position of the central pixel, r is the radius of the circle or the 
side length of the square used to define the neighbourhood around the central pixel, 

( , )B x r  is the area with center x and radius r, μ is a measurement function that 

returns a single, representative value for the given area. The density function 
describes how locally the measurement function μ  satisfies the power law behaviour. 

It measures the “non-uniformness” of the intensity distribution in the region 
neighbouring the measured point. In practice, the local density is obtained as the slope 
of the line fitted to the data{ }log , log ( ( , ))r B x rμ , where r takes on several discrete 

values in a fixed range. When the local density is computed for every pixel in the 
input image a density image is obtained. Fig. 16 shows the original grass texture and 
the corresponding density image. 

 
   (a) Original grass texture                                              (b) Density image 

Fig. 16. Computing the local density image from a texture 

There are several possibilities to define the measurement function μ . The first 

approach is to work directly on the intensity domain. Denoting with ( )I x  the 

intensity of pixels x, ( ( , ))B x rμ  is defined as: 

1 ( , )
( ( , )) ( * )rB x r
B x r G I dxμ =                                               (3) 

where “*” is the 2-D convolution operator and rG  is a Gaussian smoothing kernel 

with variance r. 
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where σ is a predefined parameter. In other words, ( ( , ))B x rμ is the sum of average 

intensity values inside the disk ( , )B x r . Since the variance of the Gaussian kernel 

depends on the neighbourhood size r, it encodes how the intensity at a point changes 
over scale. When using this measurement function, the final MFS vector contains the 
fractal dimension for multiple values of the density of the intensity. 

The measurement function shown in Eqn. 3 is simple to compute but not robust to 
large illumination changes. To overcome this problem, several meaningful definitions 
of μ  can be introduced. One possibility is to take the differential operators along the 

four main directions (horizontal, vertical, diagonal, anti-diagonal). The new 
measurement function 
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is illumination invariant, since the finite differencing due to the differential operators 
removes the effects of linear additive illumination changes. Another variant for the 
measurement function is 

( )
2 2

3 2 2
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( ( , )) *r

B x r

B x r G I dx
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μ
 ∂ ∂= + ∂ ∂ 

                                        (6) 

which is the sum of the Laplacians of the image inside ( , )B x r . The definition of the 
measurement function is important, since it directly affects the final MFS vector. A 
combined MFS vector obtained by using different measurement functions leads to a 
better representation of the texture. Fig. 17 shows the output images obtained by using 
different definitions of the measurement functions and a graph illustrating the three 
corresponding MFS vectors. As can be seen the vectors are substantially different 
from each other. The graph shows the fractal dimension ( )f α , where α ∈ ℜ  is a 
level of local density. 

Fig. 18 shows the four different textures and a graph with their corresponding 
MFS. It demonstrates that the MFS vectors of different textures are significantly 
different. The MFS of the carpet texture is completely different from the other MFS 
vectors. This is due to the fact that the carpet texture is stochastic (is comprised by a 
random pattern), whereas the other three textures show natural images of plants that 
are more similar to each other. We can also observe that as the surface roughness 
decreases from 18(a) to 18(d), the shape of the main bump of the MFS vectors 
becomes gradually narrower. 

4.2   Properties of the MFS 

The most relevant property of the MFS texture descriptor is its invariance to 
geometrical transformations under the Bi-Lipschitz map. A Bi-Lipschitz transform is 
a general class of spatial transformation including translation, rotation, projective 
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transformation and texture warping on regular surfaces. It is defined as a function
2 2:g ℜ → ℜ , if there exists two constants 1 20, 0c c> > such that for any 2,x y ∈ℜ

the following relation holds: 

1 2( ) ( )c x y g x g y c x y− < − < −                                        (7) 

This spatial invariance is a very powerful feature and it has been mathematically 
proven for images with infinite resolution. In practice we are dealing with finite 
resolution images, but the MFS has shown to be very robust to perspective 
transformations and warping of the surface. Usually four to five levels of resolution 
(radius r used to compute the FD) are sufficient for a good estimation of the fractal 
dimension. Fig. 19 shows an example of the grass texture, shown earlier in Fig. 14(a),  

 

 

               (a) - Intensity                                                    (b) - Gradients 

 

               (c ) - Laplacians                                              (d) Resulting MFS Vectors 

Fig. 17. Comparison of different measurement functions 

1μ 2μ

3μ
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1                             (a) Carpet                                                  (b) Grass 

 
 

                (c ) Leaf                                                     (d) Tree 
 

 
(e ) Multi Fractal Spectra of the density of the four textures above 

 

Fig. 18. Comparison of the MFS vectors of different textures 
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         (a) Bi-Lipschitz transformations                                  (b) Resulting MFS vectors 

 
Fig. 19. Four perspective views of a foliage texture and the corresponding MFS vectors of the 
density of intensity 

 

      (a) Warping                                   (b) Resulting MFS vectors 

Fig. 20. Perspective images of tree texture on different general smooth surfaces and the 
corresponding MFS vectors 

which has been deformed using Bi- Lipschitz transformations. The resulting MFS 
vectors are displayed next to it. As can be seen they are very similar and hence the 
different images would be matched to the same texture prototype. 

Fig. 20 shows another type of Bi-Lipschitz transform, namely the warping of a 
perspective transformation of the texture onto a smooth surface. As can be observed 
the resulting MFS vectors are nearly identical and hence the MFS is very robust to 
this type of transformations.  

In addition to the spatial invariance the MFS descriptor is invariant to local 
multiplicative changes in image illumination, if the intensity measurement function 

1μ is used, and also to local linear changes in illumination if 2μ  or 3μ  are used. The 
first invariance is due to the fact that the ratio of logarithms in Eqn. 1 does not change 
due to multiplicative changes (transformed into additive changes). The second 
invariance is due to the principle of finite differencing, namely that image derivatives 
always compensate for additive illumination changes. 
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4.3   Comparison of MFS and Histogram 

The most used statistical texture descriptor is the histogram. It is efficient and simple 
to compute, since it just counts the number of elements in a bin according to a 
categorization of the image. However in this process all the information about the 
spatial distribution of the elements is lost. Hence it is not invariant to perspective 
transformations. It is also very sensitive to changes in illumination. 

The multi fractal spectrum on the other side estimates the exponential changing 
ratio of the number of elements in a bin over multiple resolutions (different radii r in 
the computation of the local density). Accordingly it incorporates more geometrical 
information and is, as mentioned before, invariant to perspective transformations. 

5   Experimental Results 

In the paper of Xu et al. [1] the performance of the MFS descriptor was evaluated 
using classical texture retrieval and classification tasks. The MFS is compared with 
three other methods: 

 

LSP: was presented by Lazebnik et al. [2] in 2005 and is a 
sophisticated interest-point based texture representation. The main 
concept is to use elliptic clusters for characterizing a texture. It 
represents an image texture by its frequency of texture elements. It is 
robust to geometric transformations; however it is affected by changes 
in scale and viewpoint. Additional drawbacks of this method are: 
sophisticated pre-processing, K-means clustering and a large number of 
parameters. Hence it is complex and computationally expensive. 

VZ-J: was presented by Varma and Zisserman [3] in 2003 and uses a 
dense set of textons for the description task. It is very simple and non-
invariant, but it has shown to outperform complex texton descriptors, 
based on the output of certain filters. 

VG-F: was presented by Varma and Garg [4] in 2007 and also makes 
use of the local density function. They apply the MR8 filter bank in a 
pre-processing step and their final feature vector contains 13 values. 
The descriptor for each image is a normalized histogram of the pixel 
texton labellings. The main difference to MFS is that they only use 
fractal geometry locally and do not integrate the standard global fractal 
dimension. 

 

The experimental configuration of the MFS descriptor was obtained by using a 
combination of SVM cross-validation and the Fisher-score. The final vector had 33 
dimensions and consisted of 13 intensity, 10 gradient and 10 Laplacian values 
(obtained by computing the local density images using 1μ , 2μ  and 3μ  respectively). 

A weighing of 
1

.(1,2,2)
5

 was applied to compose the vector. The distance between the 

vectors was computed using the absolute sum (L1 norm). A nearest neighbour 
algorithm was used to classify the images, which were fetched from the UIUC  
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Fig. 21. Mean classification rate of 25 texture classes of MFS in comparison to three other 
methods 

 

Fig. 22. Retrieval curves for the UIUC dataset for the MFS and LSP methods 
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repository. Fig. 21 shows the classification outcome of the MFS classifier as 
described before in comparison to the other three methods. It can be observed that the  
MFS classifier is clearly better than the VZ-Joint and comparable to the other two 
methods. The MFS performs better for a small number of training samples; however 
as the number of training samples (X-axis) increases the LSP method is more 
accurate. This is due to the fact that the LSP method is more robust to large 
illumination changes as compared to MFS. 

Fig. 22 shows the retrieval curves on the UIUC dataset. Here just the performance 
of the LSP method is shown as a reference, since it is the most competitive one to the 
MFS. As can be seen the MFS accuracy is better by a noticeable margin. It is also 
necessary to mention that MFS uses a very small number of parameters as compared 
to LSP. 

Fig. 23 shows a comparison between the performance of MFS and LSP on high 
resolution images taken from the UIUC dataset. The overall performance is very 
similar; however as the number of retrievals increases the performance of MFS is 
slightly better than LSP. 

 

 

Fig. 23. Retrieval curves for high resolution images of the UIUC dataset for the MFS and LSP 
methods 

6   Summary and Conclusions 

In conclusion it can be said that the MFS is a promising texture descriptor. Its 
invariance to transformations under the Bi-Lipschitz map and illumination changes is 
proven mathematically and results in a robust descriptor. As shown in the 
experimental results it can be efficiently employed for texture retrieval and 
classification and its performance is similar or in some cases even better than 
comparable state-of-the-art texture classifiers. 
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A noticeable advantage w.r.t. to the other methods is that no feature detection, 
clustering or other pre-processing is required. Hence its computation is very efficient. 
It was also shown that the MFS is capable of utilizing the extra details that are present 
in high resolution images to create a more accurate texture description. 
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