KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS ELECTRICAL ENGINEERING DEPARTMENT

FIRST SEMESTER 2012-2013 (S121)

Course Title:	Electronics II
Course Number:	EE 303

Exam Type:	Exam II
Date:	Wednesday November 28, 2012
Time:	6:00PM-7:30PM

Student Name:
Student ID: \qquad
Section \#

GRADING		
Question 1	10	
Question 2	15	
Question 3	15	
Question 4	20	
Total:	60	

Show all your work and results. Do not give more than one answer otherwise the wrong one will be considered.

Question No.1: (10 points)

It is required to design a non-inverting amplifier with a closed loop gain of $100 \mathrm{~V} / \mathrm{V}$, given that the op-amp used has a dc gain of $10^{5} \mathrm{~V} / \mathrm{V}$ and a unity-gain frequency of $10^{6} \mathrm{~Hz}$, draw the closed-loop gain frequency response.

Label all the critical points on x and y axis

$$
\mathbf{B W} \mathbf{C L G}=\mathbf{f}_{\mathbf{t}} / \mathrm{CLG}=10^{4} \mathrm{~Hz} \rightarrow \text { (4 Points) }
$$

Question No.2: (15 points)
For the active filter circuit shown below:
a) Derive the transfer function for output $\left(\mathbf{V}_{\mathbf{0} 1} / \mathbf{V}_{\text {in }}\right)$.
b) Identify the order and the type of the filter.

a) KCL at $(-)$ of opamp1

$$
\begin{aligned}
& \quad \frac{V_{\text {in }}}{R_{3}}+\frac{V_{03}}{R_{1}}+\frac{V_{x}}{R_{2}}+\frac{V_{01}}{R_{1}}=0 \quad \text { (1) } \quad 3 \text { Points } \\
& V_{x}=-\frac{r}{r} V_{O_{2}}=-V_{02} ; V_{O_{2}}=-\frac{1}{S C R} V_{01} \\
& \text { (2) } V_{x}=\frac{1}{S C R} V_{0_{1}}=\frac{1}{3 \text { Points }} ; V_{03}=-\frac{1}{S C R} V_{O_{2}}=\frac{1}{S^{2} C^{2} R^{2}} V_{0_{1}}
\end{aligned}
$$

From (1), (2), (3) $\Rightarrow \frac{V_{\text {in }}}{R_{3}}+\frac{1}{S^{2} C^{2} R^{2}} \frac{V_{01}}{R_{1}}+\frac{V_{01}}{R_{2}} \frac{1}{S C R}+\frac{V_{01}}{R_{1}}=0$ $V_{01}\left[\frac{1}{R_{1} S^{2} C^{2} R^{2}}+\frac{1}{R_{2} S C R}+\frac{1}{R_{1}}\right]=\frac{V_{\text {in }}}{R_{3}}$
$V_{01}\left[\frac{1}{c^{2} R^{2}}+\frac{R_{1}}{R_{2} C R} S+S^{2}\right]=\frac{S^{2} R_{1}}{R_{3}} V_{\text {in }}$
$\frac{V_{01}}{V_{\text {in }}}=\frac{\frac{R_{1}}{R_{3}} S^{2}}{S^{2}+\frac{R_{1}}{C R_{2} R} S+\frac{1}{C^{2} R^{2}}}$
(*)* 3points
b) $2^{\text {nd }}$ order high pass filter 3 points

Question No.3: (15 points)
Consider the following filter transfer function:

$$
T(s)=\frac{\left(\frac{1}{C_{2} R_{2}}\right) s}{s^{2}+\left(\frac{1}{C_{1} R_{2}}\right) s+\frac{1}{C_{1} C_{2} R_{1} R_{2}}}
$$

Design the filter such that it has a center frequency of $1 \mathrm{krad} / \mathrm{s}$, a bandwidth of $200 \mathrm{rad} / \mathrm{s}$, and a center-frequency gain of $2 \mathrm{~V} / \mathrm{V}$. Assume $\mathrm{C}_{1}=0.5 \mu \mathrm{~F}$.

$$
\begin{align*}
& \text { Center freq. }=w_{0}=\frac{1}{\sqrt{C_{1} C_{2} R_{1} R_{2}}}=1 \mathrm{Krad} / \mathrm{s} \text { 3points } \\
& B W=\frac{1}{C_{1} R_{2}}=200 \mathrm{rad} / \mathrm{s} \quad \text { (2) } \tag{2}
\end{align*}
$$

center freq gain $=\frac{c_{1}}{c_{2}}=2 \mathrm{v} / \mathrm{v}$
(3) 3 points
c_{1} is given $0.5 \mu \mathrm{~F}$ from (3) $c_{2}=0.25 \mu \mathrm{~F} \quad 2$ points
From (2) $\frac{1}{0.5 \mu \times R_{2}}=200 \Rightarrow R_{2}=10 \mathrm{~K} \Omega$
2 points

From (1)

$$
\begin{aligned}
& w_{0}^{2}=\frac{1}{0.5 \mu \times 0.25 \mu \times R_{1} \times 10 \mathrm{~K}} \\
& R_{1}=800 \Omega
\end{aligned}
$$

Question No. 4: (20 points)

A series-shunt feedback amplifier employ a basic amplifier with input and output resistance each of $1 \mathrm{k} \Omega$ and gain $\mathrm{A}=2000 \mathrm{~V} / \mathrm{V}$. The feedback factor $\beta=0.1 \mathrm{~V} / \mathrm{V}$. Find:
a) the closed loop gain $\left(A_{f}\right)$.
b) the input resistance for the closed loop amplifier.
c) the output resistance for the closed loop amplifier.
d) If a manufacturing error results in a reduction of A to $1800 \mathrm{~V} / \mathrm{V}$, What is the new value for the closed loop gain $\left(A_{f}\right)$? Comment on your result.
a) $A_{f}=\frac{A}{1+\beta A}$

$$
\left.A_{f}=\frac{2000}{1+(0.1)(2000)}=9.950 \frac{V}{V} \quad \rightarrow \text { (4 Points }\right)
$$

b) $R_{i f}=R_{i}(1+\beta A)$

$$
R_{i f}=(1)(201)=201 k \Omega \rightarrow(4 \text { Points })
$$

c) $R_{o f}=\frac{R_{O}}{1+\beta A}$

$$
R_{o f}=\frac{1}{1+200}=5 \Omega \quad \rightarrow \text { (4 Points) }
$$

d) $A_{f(\text { new })}=\frac{A_{\text {new }}}{1+\beta A_{\text {new }}}=\frac{1800}{1+(0.1)(1800)}=9.945 \frac{\mathrm{~V}}{\mathrm{~V}} \rightarrow$ (4 Points)

The $\%$ change in A_{f} is less than the $\%$ change in A by the amount of the feedback.

