KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

Course Title:	Electronics II
Course Number:	EE 303

Exam Type:	Exam II
Date:	Wednesday November 28, 2012
Time:	6:00PM-7:30PM

Student Name:	
Student ID:	
Section #	

GRADING				
Question 1	10			
Question 2	15			
Question 3	15			
Question 4	20			
Total:	60			

Show all your work and results. Do not give more than one answer otherwise the wrong one will be considered.

Question No.1: (10 points)

It is required to design a non-inverting amplifier with a closed loop gain of 100 V/V, given that the op-amp used has a dc gain of 10⁵ V/V and a unity-gain frequency of 10⁶ Hz, draw the closed-loop gain frequency response.

Label all the critical points on x and y axis

$$BW_{CLG} = f_t/CLG = 10^4 Hz \rightarrow (4 Points)$$

Question No.2: (15 points)

For the active filter circuit shown below:

- a) Derive the transfer function for output (V_{o1}/V_{in}) .
- b) Identify the order and the type of the filter.

Question No.3: (15 points)

Consider the following filter transfer function:

$$T(s) = \frac{(\frac{1}{C_2 R_2})s}{s^2 + (\frac{1}{C_1 R_2})s + \frac{1}{C_1 C_2 R_1 R_2}}$$

Design the filter such that it has a center frequency of 1 krad/s, a bandwidth of 200 rad/s, and a center-frequency gain of 2 V/V. Assume $C_1 = 0.5 \, \mu F$.

Center freq. =
$$\omega_0 = \frac{1}{|C_1C_2R_1R_2|} = 1 \text{ K rad/s}$$
 3Points

BW = $\frac{1}{C_1R_2} = 200 \text{ rad/s}$ 3 3Points

Center freq. gain = $\frac{C_1}{C_2} = 2 \text{ V/V}$ 3 3Points

C1 is given 0.5 MF from 3 $C_2 = 0.25 \text{ MF}$ 2 Points

From 3 $\frac{1}{0.5 \text{ M} \times R_2} = 200 \Rightarrow R_2 = 10 \text{ K}_{1}$ 2 Points

From 0 $\omega_0^2 = \frac{1}{0.5 \text{ M} \times R_2}$ 2 Points

 $R_1 = 800 \text{ R}$

Question No. 4: (20 points)

A series-shunt feedback amplifier employ a basic amplifier with input and output resistance each of $1k\Omega$ and gain A = 2000 V/V. The feedback factor $\beta = 0.1$ V/V. Find:

- a) the closed loop gain (A_f) .
- b) the input resistance for the closed loop amplifier.
- c) the output resistance for the closed loop amplifier.
- d) If a manufacturing error results in a reduction of A to 1800V/V, What is the new value for the closed loop gain (A_f) ? Comment on your result.

a)
$$A_f = \frac{A}{1+\beta A}$$

$$A_f = \frac{2000}{1+(0.1)(2000)} = 9.950 \frac{V}{V} \rightarrow \text{(4 Points)}$$

b)
$$R_{if} = R_i(1 + \beta A)$$
 $R_{if} = (1)(201) = 201k\Omega \rightarrow (4 \text{ Points})$

c)
$$R_{of} = \frac{R_O}{1+\beta A}$$

$$R_{of} = \frac{1}{1+200} = 5\Omega \quad \rightarrow \text{(4 Points)}$$

d)
$$A_{f (new)} = \frac{A_{new}}{1 + \beta A_{new}} = \frac{1800}{1 + (0.1)(1800)} = 9.945 \frac{V}{V} \rightarrow \text{(4 Points)}$$

The % change in A_f is less than the % change in A by the amount of the feedback. \rightarrow (4 Points)