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 Chap. VI: Sampling & Pulse Code Mod. 

 Ver. 1.0.        Lect. 33

Differential Pulse Code Modulation (DPCM) (Continued)
The advantage of DPCM is the reduced amount of information that must be transmitted if we maintain the same SNR or an improved SNR if we maintain the same amount of information. To get an idea on the improvement in performance that we can get from using DPCM as compared to the performance of regular PCM, DPCM can increase the SNR for some signals by as much as 20 dB. This corresponds to an improvement in the signal power compared to the noise power by 100 times, or a reduction in the amount of information by more than 3 bits/sample.  However, the system considered in the previous lecture for DPCM is not practical because of the two problems mentioned at the end of the last lecture.
These problems can be solved as follows:

1.
Eliminating the problem of accumulation of quantization noise: This problem can be solved by avoiding the quantization of the difference signal  d[k] between x[k] and its previous sample x[k–1], or
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and quantizing instead a difference signal (we will call it g[k]) that is the difference between  x[k] and the previous sample of its quantized form xq[k–1]. Therefore, g[k] is given by
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Apparently, this will require applying the quantizer on the signal x[k] to obtain  xq[k–1], which we are trying to avoid since the amplitude of  x[k] is generally larger than the amplitude of a difference signal like d[k] or even g[k]. In fact, if both x[k] and g[k] are available, we can reconstruct the quantized form of x[k] using the following system.
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In the above system, we can easily prove that the resulting signal xq[k] is the quantized form of  x[k].

First we see that
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Now, the output of the quantizer is the quantized form of g[k] which can be represented by adding a quantization noise q[k] to the input of the quantizer. Therefore,



[image: image5.wmf][][][]

q

gkgkqk

=+

.

Substituting for  g[k]  in  gq[k] gives
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From the block diagram,
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So, in fact, the function xq[k] is the quantized form of x[k] as seen by the last line of the above equation. A word of caution here, the above derivation does not mean that if we quantized  x[k] directly by the quantizer we will get  xq[k]. It just says that xq[k] is a quantized form of x[k]. If we passed x[k] through the same quantizer in the block diagram above, we will get another function xq2[k] with samples that are generally different from xq[k]. 

At the receiver side of the DPCM system, we can use the gray block in the transmitter labeled “Predictor” since its input is the DPCM output  gq[k]  and its output is the desired signal xq[k]. Therefore the block diagram would be as follows.
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Now, assume the quantizer used to quantize g[k] is again an 8–level quantizer with quantization intervals  [–4,–3), [–3,–2), [–2,–1), … , [3,4)   and the output quantization levels are the center points in each interval (–3.5, –2.5, –1.5, … , 3.5).    

NOTE: THE FOLLOWING TABLE IS FOR ILLUSTRATION. DO NOT SPEND TOO MUCH TIME TRYING TO FIGURE OUT HOW IT IS COMPUTED (MATLAB HELPED ME).

	k
	–1
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	x[k]
	0
	0.3
	1.5
	0.7
	1.0
	2.3
	3.7
	2.8
	3.4
	2.8
	0

	g[k] (= x[k] – xq[k–1]) 
	0
	–0.2
	1.5
	–0.8
	0
	0.8
	1.7
	–0.7
	0.4
	–0.7
	–3.0

	gq[k]
	0.5
	–0.5
	1.5
	–0.5
	0.5
	0.5
	1.5
	–0.5
	0.5
	–0.5
	–2.5

	Quantization

Up/Down  
	U (or

D)
	D
	–
	U
	U (or

D)
	D
	D
	U
	U
	U
	U

	xq[k] (= gq[k] + xq[k–1])
	0.5
	0
	1.5
	1.0
	1.5
	2.0
	3.5
	3.0
	3.5
	3.0
	0.5

	xq[k–1]
	0
	0.5
	0
	1.5
	1.0
	1.5
	2.0
	3.5
	3.0
	3.5
	3.0

	gq[k]
	0.5
	–0.5
	1.5
	–0.5
	0.5
	0.5
	1.5
	–0.5
	0.5
	–0.5
	–2.5
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	0.5
	0
	1.5
	1.0
	1.5
	2.0
	3.5
	3.0
	3.5
	3.0
	0.5
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	0.5
	–0.3
	0
	0.3
	0.5
	–0.3
	–0.2
	0.2
	0.1
	0.2
	0.5

	Err. Direction Up/Down
	U
	D
	–
	U
	U
	D
	D
	U
	–
	U
	U


This table illustrates that the above DPCM does not cause accumulation of error. Looking at the reconstructed signal and the original input signal, we see that the magnitude of the difference is always less than or equal to half the quantization interval (i.e. ( 0.5). Even when the quantization error for a sequence of samples had the same direction as it is the case for the last four columns of the table, the difference between the input and output of the system was always within half the quantization interval. 


2.
Reducing the effect of transmission errors: as mentioned before, transmission errors result in errors in all the reconstructed samples of the input signal that come after the transmission error. The best method to combat this problem is to divide the data into sets of samples and resent the transmitter and receiver after the transmission of each set of samples. This way, a transmission error that occurs will affect only the samples of that part of the data. Once the system is reset, the effect of that error will stop. 
Notes are provided by Dr. Wajih. Minor Modifications by Dr. Muqaibel
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