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Transient Analysis of Data-Normalized
Adaptive Filters

Tareq Y. Al-Naffouri and Ali H. Sayedrellow, IEEE

Abstract—This paper develops an approach to the transient rithms uniformly but also to arrive at new performance results.
analysis of ada_ptlv_e filters with _data normallz_atlon. Amc_mg other This approach is based on studying the energy flow through each
results, the derivation characterizes the transient behavior of such iteration of an adaptive filter, and it relies on an exact energy

filters in terms of a linear time-invariant state-space model. The fi lation that holds f | | f adaptive fil
stability of the model then translates into the mean-square stability ©ONS€rvation relation that holds for a large class ot adaptive fil-

of the adaptive filters. Likewise, the steady-state operation of the t€rs. This relation has been originally developed in [16]-[19] in
model provides information about the mean-square deviation the context of robustness analysis of adaptive filters within a de-

and mean-square error performance of the filters. In addition terministic framework. It has since then been used in [12]-[15]
to deriving earlier results in a unified manner, the approach 54 5 convenient tool for studying the steady-state performance

leads to stability and performance results without restricting the f adaptive filt ithi tochastic f K I In thi
regression data to being Gaussian or white. The framework is Oladaptive fifters within a stochastic framework as well. In this

based on energy-conservation arguments and does not require anPaper, we show how to extend the energy-based approach to the
explicit recursion for the covariance matrix of the weight-error  transientanalysis (as opposed to tkeeady-statanalysis) of

vector. adaptive filters. Such an extension is desirable since it would
allow us, just as in the steady-state case, to bring forth sim-
ilar benefits such as the convenience of a unified treatment, the
derivation of stability and convergence results, and the weak-
ening of some assumptions.

In a companion article [20], we similarly extend the energy-

] ) ) ] _conservation approach to study the transient behavior of adap-
DAPTIVEfilters are, by design, time-variantand nonlineagi e filters with error nonlinearities.

systems that adapt to variations in signal statistics and that
learn from their interactions with the environment. The succeas Contributions of the Work
oftheirlearning mechar_usm can be measured_ln'_[erms ofhowfa he main contributions of the paper are as follows.
they adapt to changes in the signal characteristics and how wel . . . L
they can learn given sufficient time (e.g., [1]-[3]). It is therefore a) Inthe nextseptlon,we introduce weighted estimation errors
typicalto measurethe performance of an adaptivefilterinterms of aswellasweightedenergy norms aqd relatethe§e quantities
both its transient performance and its steady-state performance. through gfundamental energy relation. The main results of
The former is concerned with the stability and convergence rate this se<_:t|on are summanz_ed in Theorem 1. .
of an adaptive scheme, whereas the latter is concerned with thB) In Sections Il and !V’ we |IIust_rate the m‘?"h?”'sm of our
mean-square error that is left in steady state. apprqach for tfa“S'e”t anaIyS|s by applying it tc_) the LMS
There have been extensive works in the literature on the per- algorithm and its normalized version for Gaussian regres-
formance of adaptive filters with many ingenious results and SOrs. .
approaches (e.g., [1]-[11]). However, it is generally observedc) Ir_‘ Sect|o_n v, we study the_g_energl case of ad_aptlve a_lgo-
that most works study individual algorithms separately. This is r!thms with data nonlinearities W'thOUt 'Mposing restric-
because different adaptive schemes have different nonlinear up- t|o_n_s on the color O.f the regression datg (ie., W'thOUt re-
date equations, and the particularities of each case tend to re- quiring the regressmn_data to be Gaussian or white). The
quire different arguments and assumptions. apalysus leads to stability results and qlosed—form expres-
In recent works [12]-[15], a unified energy-based approach sions for the MSE and MSD. The main results are sum-

to the steady-state and tracking performance of adaptive filters 2 Imasr'z‘i‘_j m\';lheoremtz. d tudv to include adaoti
has been developed that makes it possible not only to treat algo-) n Section Vi, we extend our study to include adaptive
filters that employ matrix data nonlinearities. We again

derive stability results and closed-form expressions for

Index Terms—Adaptive filter, data nonlinearity, energy-con-
servation, feedback analysis, mean-square-error, stability,
steady-state analysis, transient analysis.
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B. Notation

We focus on real-valued data, although the extension to
complex-valued data is immediate. Small boldface letters are
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TABLE |
EXAMPLES OF DATA NONLINEARTIES g[-] OR H[']

ALGORITHM | g[] or H[]
LMS 1
NLMS ]
e-NLMS €+ [Jugl
NLMS famlly ]FILﬂ_dlag (lui1 lq_ISgn(uil)v Iuiz |q—lsgn(ui2)7 AR |uiM1q—1Sgn(uiM ))
? q
Power normalized diag (p1 (), p2(), . . ., pm(3))
LMS pr(i+1) = Bpi(i) + (1 = B)lui|?, 0 B<1
Sign regressor diag (ng;(:'ﬁ, Sgr:‘(::z) s sgx;(:;M)>
Multiple step-sizes diag(p1, p2, - - -, m)

used to denote vectors, e.aw, and the symboll" denotes for some positive scalar-valued functighu,]. In the latter part
transposition. The notatiofiw||> denotes the squared Eu-of this paper (see Section V1), matrix nonlinearitiéiu;] will
clidean norm of a vectdfw||* = w” w, whereadw||% denotes also be considered, i.e., functiofi§] of the form

the weighted squared Euclidean noff|% = w!Zw. All

vectors are column vectors except for a single vector, namely, fle(i),u;] = H[u;le().

the input data vector denoted ly, which is taken to be a row

vector. The time instant is placed as a subscript for vectors anable | lists some examples of data nonlinearitjes], H[-]}

between parentheses for scalars, awgande(i). that appear in the literature. In the table, the notation
{uwi,,ui,, - - ., u;,, } refers to the entries of the regressor vector
C. Adaptive Filters With Data Nonlinearities u;.

Consider noisy measuremenfg(i)} that arise from the
model [I. WEIGHTED ENERGY RELATION

The adaptive filter analysis in future sections is based on an
energy-conservation relation that relates the energies of several

for someM x 1 unknown vectomw® that we wish to estimate, €Tor quantities. To derive this relation, we first define some
and wherey(i) accounts for measurement noise and modelinggeful weighted errors. Thus, [Exdenote any symmetric posi-
errors, andx; denotes aow regression vector. Both; ando (i)  tive definiteAl x M weighting matrix and define the weighted
are stochastic in nature. Many adaptive schemes have been@i@tiori anda posteriorierror signals

veloped in the literature for the estimation @f in different

contexts. Most of these algorithms fit into the general descrip- ef(i)éuizﬁ;i, ef(i)éuizﬁ;iﬂ. (6)
tion

d(i) = uyw’ + v(i)

ForX = I, we use the more standard notation
w1 = w; + pfle(?), u,;]u,L-T, 1>0 1)
ea(i)2el(i) = wivy,  ey(i)2el(i) = usvip.

a

wherew; is an estimate fow® at iteration, 1 is the step-size

The freedom in selectin® will enable us to perform different
kinds of analyses. For now; will simply denote an arbitrary
is the estimation error, antle(i), u;] denotes a generic function Weighting matrix.
of ¢(¢) and the regression vectat. _ _

In terms of the weight-error vectas; = w’ — w;, the adap- A. Energy-Conservation Relation
tive filter (1) and (2) can be equivalently rewritten as The energy relation that we seek is one that relates the ener-
gies of the following error quantities:

e(i) = d(i) — wyw; = ww’ — wyw; + v(i) @

Wiy = w; — pfle(i), wlu @)
and {i, i, €5 (i), (i) }- Q)
e(i) = ugb; + v(i). (4) Toarriveatthe desired relation, we premultiply both sides of the

adaptation equation (3) hy;3 and incorporate the definitions

We restrict our attention in this paper to nonlinearitidg (6). This results in an equality that relates the estimation errors

that can be expressed in teeparableform ey (i), €3 (i), ande(i), namely

'u-—e(i) ezi:ezi—L'ei u;
fle(i), 1]—g[ui] (5) p (1) = eg (1) ﬁz(i)f[()’ i] (8)
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where we introduced, for compactness of notation, the scalar5) Orthogonal transformation. If @ is orthogonal, it is
quantity easy to see that

1 H T
oA ==, fwXu] #0 T |12 = ||,
i (5)2 { o] i # © 1@ il|” = [ (13)
0, otherwise.
] ) ] o 6) Blindness to asymmetry.The weighted sum of squares
Using (8), the nonlinearity[e(7), u;] can be eliminated from is blind to any asymmetry in the weight, i.e.,
(3), yielding the following relation between the errors in (7):
i o , . lwill% = lwill%r = llill% o1 a7 o (14)
W1 = Wy — i (i)uf [} (1) — e (i) ! v Areans
: o . . 7) Notational convention.We will often write
From this equation, it follows that the weighted energies of these
errors are related by ~ 2 T
||wz'||veqzl)—||wi||21
- T - (e — N TS S T ) ) .
Wiy DW= (W — s (i)ug [eg (i) — ¢, (0)]) where vedY;) is obtained by stacking all the columns
2 (w; — g (i)u] [e3 (i) — ey (4)]) of 3, into a vector. For the special case wi®nis diag-
_ ) onal, it suffices to collect the diagonal entries®f into
or, more compactly, after expanding and grouping terms, by the 3 vector, and we thus write
following energy-conservatioientity
- 2 — . a2 ~ 12 . a2 ||ﬂ)t||é|agzl)é”ﬁh”221
[wir1ll3 + B (0) ez ()] = [lwill + Es(9) e, ()] (10)
This result isexactfor any adaptive algorithm described by (3)¢  pjta-

i.e., for any nonlinearityf[-, -], and it has been derived without

any approximations, and no restrictions have been imposed or{/e NOW examine the simplifications that occur whfgn -] is
the symmetric weighting matrix. restricted to the form (5). Upon replacirg (i) in (10) by its

The result (10) with = I was developed in [16]-[18] in €duivalent expression (8) and expanding, we get

Normalized Filters

the context of robustness analysis of adaptive filters, and it was e(i)eZ (i) 2 g2(;)
later used in [12]-[15] in the context of steady-state and tracking ||w; 41 ||% = ||w:||% — 2u 2 _M ~ - (15)
analysis. The incorporation of a weighting mafiallows us to glu] As(1) g°[ui
perfprm transient analyzes as well, as we will discuss in futuge proceed, we replacei), as defined in (4), by
sections.
) 7)) — a 7 + 7).
B. Algebra of Weighted Norms () = eald) +0()
Before proceeding, it is convenient for the subsequent discden, (15) becomes
sion to list some algebraic properties of weighted norms. There- N s o
fore, leta; anda, be scalars, and 1€, and=; be symmetric |4, 112 = [l ||% — 24 ea(i)eZ (i) LM ea(?)
matrices of size\/. Then, the following properties hold. glu;] Fiss (1) g2[w]
1) Superposition. 9 (eaz(i) b ead) ) o(i) + p* o v3(9) (16)
L o]~ T (i) o?fu] (i) 7o)
ar|lwils, + azllwills, = [lwilli, s, 10,5,- (1)
o Now, note that>(i)e, (i) ande2(i) can be expressed as some
2) Polarization. weighted norms oiw;. Indeed, from (12), we have
(W E;) (WD) =i, yr v, ca(i)ey (1) = (wiy) (w;Zw;) = |lwil%r, s (17)
=llwill5, 7,5, - (12)

and, subsequently
3) Independencelf u; andw; are independent random vec-

20 N =102

tors, then the polarization property gives ea(i) = ea(i)e, (1) = [lwillyr,,, - (18)
E[(wZ1w;) (0;Zow;)] =E [||771z'||§ s ] Upon substituting (17) and (18) into (16), we get
2

=B (@102, 11,5 70, 12—l 12 - plwlld o
ZlE[ ‘i ’]22 “w’H‘lHE ||w2||2 Mq[ut] ||'U/»L||u;_1"u72+/1/ qz[uL] ||wl||u?u7
V\;he:e thte_last equality is true whéy andX, are con- 9 (ef(z‘) L m . e;(i) ) oi) + 120%(0) ||121i||22.
siant matrices. glu] fis; (1) g%[w] 92w

4) Linear transformation. For anyN x M matrix A
This relation can be written more compactly by using the super-

|Aw; |3 = ||w:]|3rs 4 position property (11) to group the various weighted norms of
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w; into one term, namely This condition enables us to the split the expectation in (23)
fesal} = il — 20 (2] - a0} N il
ir1ll% W= Y] T (i) o2 [ui] E [|ii1||2] = E [||ﬁ;i||%E[2,]] + 1202E {%] . (25)
P 2 2/ ||uL||% I e o '
(i) + pv (L)—qz [w] (19) Observethatthe weighting matrix fé; is now given by the ex-
o pectation”Z[X’]. As we will soon see, the above equality renders
where the issue of transient and stability analyses of an adaptive filter
T 9 equivalent to a multivariate computation of certain moments.
AR ZMI;Euu]iE + !gfﬂz] T, (20)  In order to emphasize the fact that the weighting matrix

changes fron® to E[X’] according to (21), we will attach a
The only role thats plays is a weight in the quadratic formtime index to th.elweighting matrices and use (21) and (25) to
|l;]|2, . Hence, and in view of (14), we can replace the definingffité more explicitly
expression (20) foE’ by its symmetric part

~ X [Juil g,
B[l ] = B i3] + p202E | S
Ay ulu wlu s il r 9°lui]
Y= -—u Y- uX +p s w. (21)
glui] glui] 9°[ui] where we replaceX by ¥, ,; and E[X'] by X;, which is now
Finally, it is straightforward to conclude from the weight-errofi€fined by
recursion A ulu; uu;
T =341 —uE o] Yip1 — pXia B o]
Wiy = s = pfea(i) + (i) ' uills.,
& s [Gygagere]
and frome, (i) = u;w; that _ . b g ,
Note that this recursion runs backward in time, and its boundary
s ulu;\ . 4 u’ Q) (22) condition will therefore be specified ab. Moreover,X; can be
Wit1 = o )™ Py verified to be positive definite.
Likewise, applying the independence assumption Al to the
) ) i right-hand side of (24), we find that
D. Weighted Variance Relation i
A few comments are in place. Ew,. 1 = FE (I — uu"' ui) - Bw;
1) First, the pair (19) and (21) is equivalent to the energy glwil
relation (10) and, hence, is exact. with the expectation on the right-hand side of (24) split into the
2) This pair represents the starting point for various types Bfoduct of two expectations. )
analyzes of adaptive filters with data normalization. e) Inspection of recursions (19) and (23) reveals that the iid

3) Asitstands, the energy relation (19)—(21) cannot be propssumption (AN) on the noise sequence is critical. Indeed, while
agated in time since it requires a recursion describing thé3) can be propagated in time without the independence as-
evolution ofe, (7). However, this complication can be re-sumption Al, it is not possible to do the same for (19). Fortu-
moved by introducing the following reasonable assumpately, assumption AN is, in general, reasonable.

tion on the noise sequence: We summarize in the following statement the variance and
AN. The noise sequenasi) is zero-mean, iid and is mean recursions that will form the basis of our transient anal-
independent ofi;. ysis.
This assumption renders the third term of (19) zero- Theorem 1 (Weighted-Variance RelatiorJonsider an adap-
mean, and (19) simplifies under expectation to tive filter of the form
2 Cw Mo,
E [lloi1|[E] = E [lli %] + w0l E w;’(ﬂﬂ (@ Wit = Wik prop pei), $20 (26)

wheree(i) = d(i) — wyw;, andd(:) = w;w® + v(i). Assume

Likewise, (22) simplifies to that the sequencds (i), u;} are iid and mutually independent.

Tu For any given®, 4, it holds that
Eﬁ]i-{—l =F |:<I_ 12 C Z) ~L:| (24) 2
glu;] . o o o [ wills,,,
o o B[l = B @3] + et | | @7)
While the iterated relation (23) is compact, it is still hard 9%[ui]

to propagate sincE’ is dependent on the data so that whereX; is constructed fronE,, ; via
the evaluation of the expectatidn|||w; |2, ] is not trivial . T
in general. _ X=X —pk {—ui ul} Yip1 —pXip B {ui ul}
d) For this reason, we shall contend ourselves with the inde- glu;] glu;]
pendence assumption. o [llsiy 7o
Al. The sequence of vectors is iid. 'k R (28)
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It also holds that the mean weight-error vector satisfies AG. The regressor$u;} arise from a Gaussian distribution
uTu with covariance matrix2.
~ 7 A ~ . .
Fw;, = FE (I— ug[u']> w;. (29) In this case, the data dependent moments that appear in
T

(31)—(33) are given by

The purpose of the sections that follow is to show how thE [a/ w;] = A, E I:”ﬁi”%iﬁ;rﬁi} =25;A% + Tr (Z;A) A
abovg variance and mean recgrsions can be. used to Stu.dyfngrefore, for LMS, recursions (31) and (32) simplify to
transient performance of adaptive schemes with data nonlinear-
ities. In particular, we will show how the freedom in selecting £ [IIE‘HII%H} =F [HE‘II%J + 12o2E [IIEH%M} (34)
the weighting matrix®; , can be used advantageously to desq
rive several performance measures. - — — - )

First, however, we shall illustrate the mechanism of our anari = Zit1 — pAB 11 — pZi A + 20780 A
ysis by considering two special cases forwhich results are already +12Tr (ZHA) A (35
available inthe literature. More specifically, we will start with theyjje (33) becomes
transient analysis of LMS and normalized LMS algorithms for o o
Gaussian regression data in Sections Il and IV. Once the main Bwipy = E(I - pA) _sz (36)
ideas have been illustrated in this manner, we will then describeNow, observe that in recursion (35}; will be diagonal if
our general procedure in Section V, which applies to adaptive f; is. Therefore, in order for all successegs to be diagonal
ters with more general data normalizations, as well as to regriéss sufficient to assume that the boundary condition for the
sion data that are not restricted to being Gaussian orwhite. ~ recursion for; is taken as diagonal. In this way, thes will be

completely characterized by their diagonal entries. This prompts
E. Change of Variables us to define the column vectors

In the meantime, we remark that sometimes it is useful to Eiédiaqii) and )\édiag(A),
emp_loy a convenient change of coordinates, eTspeC|aIIy Whlennterms of these vectors, the matrix recursion (35) can be re-
dealing with Gaussian regressors. ThusRet Eu; u; denote .
. . . AP .placed by the more compact vector recursion
the covariance matrix afi; and introduce its eigendecomposi-
tion o; = (I —2uA + 2M2A2) Oit1+ ,u2 (ATE,H,l) A

R— QTAQ or

5.2 Fa, (37)
whereQ is orthogonal, and is a positive diagonal matrix with gi= FOit1
entries{)\; }. Define further where

w=Qi;, ucuQT T2Q=,Q".  (30)

In view of the orthogonal transformation property (13), we have .
2 The matrixF" describes the dynamics by which the weighting
= matricesX; evolve in time, and its eigenstructure turns out to
Moreover, assuming that the nonlinearty] is invariant under be essential for filter stability. Using the fact thgt= Fo; 1,
orthogonal transformations, i.g/u;] = g[u;] (€.9.,9[u;] =1 we can rewrite (34) using a compact vector weighting notation
or g[u;] = ||u;||?), we find that the variance relation (27) retains 2 _ gl 2,2 i1 12 38

the same form, namely Tit1 [@ill5,,, +Hooublulz,,. (38

F2 (I —2uA + 2/1,2A2) + 12T

lwill5, = @il and [jull5, = [

Elwiy]

w2 Recursions (36)—(38) describe the transient behavior of LMS,

— — YIS, i - ili -

B [||’“’i+1||2§ } - E [||wi||2§ ]JrugagE — 31) and conclusions about mean-square stability and mean-square
i+ : g [u;] performance are now possible.

By premultiplying both sides of (28) b§ and post-multiplying /N transient analysis, we are interested in the time evo-

by Q7 we similarly see that (28) also retains the same form lution of the expectationd Faw;, E|lw;||*} or, equivalently,
ﬁTﬁ} { Ew;, E||w;||*} sincew; andw; are related via the orthogonal

=T —.
4 Wi matrix Q. We start with the mean behavior.

Y, =%, —ukE [ } Y —pEiaE [

gla] glw]
It]s. A. Mean Behavior and Mean Stability
+12E | ——=alw|. (32) _ o . .
g2[w] From (36) we find that the filter is convergent in the mean if,
Likewise, (29) becomes and only if, the step-sizg sat|sf|2es

oW 39

EE’H-I =K (I_ :u’u —u ) - Ew;. (33) s Amax ( )
glm] where ...« is the largest eigenvalue di.

[ll. LMS WITH GAUSSIAN REGRESSORS B. Mean-Square Behavior

Consider the LMS algorithm for whici{u;] = 1 and assume  The evolution ofE||w;||*> = E|w;||?> can be deduced from
the following. the variance recursion (34) X, is chosen aX;,; = I (or,
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equivalently,3;, = I). This corresponds to choosiag,; in  coefficient matrix¥.t The evolution of the top entry af; cor-
(38) as a column vector with unit entries, which is denoted byesponds to the mean-square deviation of the filter. Observe fur-
.12 col{1, 1 1} ther_that the eigenvglues 6 coincide with. tho_se oF.
i+l Pl It is worth remarking that the same derivation that led to (44)

Now, we can see from (38) that with W; defined in terms of the unity vectdrcan be repeated

M for any other choice o&;.1, sayo;11 = o for somea, to

E|wi14|* = E|[wi|%, + pn*os (Z )\k) (40) conclude that the same recursion (44) still holds witeplaced

k=1 bya. For instance, if we chooge= ), then the top entry of the
which shows that in order to evaluafé|w;,||?>, we need resulting state vectorV; will correspond to the learning curve
Elwi|%, with a weighting matrix equal toF'l. Now, of the adaptive filter. In Section V-B we will use this remark

E||wi;1||2, can be deduced from (38) by settiig,; = F1, to describe more fully the learning behavior of adaptive filters
ie., th with data normalizations.

Bl |7, = E”Ei”%l +uto; ()‘TFl) - (41 c. Mean-Square Stability
Again, in order to evaluaté?||mi+1||2ﬂ, we need]E*?Hﬁill%z1 From the results in the above two sections, we conclude that
with weightingle. This term can be deduced from (38) b)}he LMSfiIte_rwiII be ;tgble inthe mean and mean-square senses
choosingzi; 1 = 71 if, and orllllf, u satisfies '(39) and guarantees .th(_a Sj[abl|lty of
L the matrixF (i.e., all the eigenvalues df should lie inside the
E||mi+1||2f21 = Ellﬁill%1 + p?o? (z\TF 1) (42) unit circle). SinceF is easily seen to be non-negative definite
] o —3 in this case, we only need to worry about guaranteeing that its

and a new term with weighting matriX" 1 appears. Fortunately, eigenvalues be smaller than unity.
this procedure terminates in view of the Cayley—Hamilton the- | gt ys writeF in the form
orem. Thus, lep(z) = det(zI — F') denote the characteristic

polynomial of F; it is an Mth-order polynomial in: F=1-uA+’B
p(z) =™ 4+ prr_1a™ 7 Fpyr_0a™ 2 4+ 4+ piz+p,  Where the matriced andB are both positive-definite and given
with coefficients{p, pas = 1}. The Cayley—Hamilton theorem by
states that every matrix satisfies its characteristic equation, i.e. A Ao a2 T
- ) SR A=2A B=2A"+ AX". 45
p(F') = 0, which allows us to conclude that ’ + (45)
) M-1 ) It follows from the argument in Appendix A that the eigenvalues
Elwiyi|zn, = > —prE|Wis = (43)  of F will be upper bounded by one if, and only if, the parameter
k=0 L satisfies
We can now collect the above results into a single recursion by
writing (40)—(43) as 0<pu< AR (46)
[ E||w;1][3 T 0 1 max ( )
w12
E”w”’“”Fl 0 0 1 in terms of the maximum eigenvalue df ' B (all eigenvalues

— 2

Elwi ”?1 0 0 0 1 of A~ B are real and positive). The above upper boungd oan
: = : also be interpreted as the smallest positive seakiiat makes

(I — nA™'B) singular. Let us denote this value gfby 7°.

E ._i 2 0 0 0 1 i 2 . .
il o B Combining (46) with (39), we find that should satisfy
_E||ﬁi+1||2f(M_1>1_ Po 7P TP ... TPM-L )
:V;Z+1 = 0<lt<mln{m77’] }
'E||@||§ 1 . We can be more specific aboyt and show that it is smaller
Elwill%, )%_1 than1/Amax(R). Actually, we can characteriz¢’ in terms of
E||E,;||2F21 /\szl the eigenvalues aR as follows. Using the definitions (45) for
X . +u?02| XM F'1 | AandB, itcan be verified that for alf € (0,1/Amax)
w2 i A7 _
Blwillgo—a, AFYTM] det (T—-nAT'B) = <1 S S\ 1)
Bl —

. I—nA).
If we define the vector and matrix quantitifg);, 7, Y} as indi- det (I'—nA)

cated above, then the recursion can be rewritten more compadthg values ofp €  (0,1/Anax) that result in det

as (I —nA~'B) = 0 should therefore satisfy
2 2 AT -1
Wit1 = FWi + p o). (44) 5> (2 'I-A) 1=1

We_ therefore find _that the transient behavior Of_ LMS is C!e' 1To be more precise, the transient behavior of LMS is described by the com-
scribed by thel/-dimensional state-space recursion (44) withination of both (44) and recursion (36).
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ie., The above means that in order to obtain an expression for
o the MSD, we should now choos&., in (47) such that
_Z Ak ' oo = (I— F) 1, which yields
L—nA,

MSD = w202 [l ., |

This equality has a unique solutionf inside the interval jyst Jike the expression for the MSE, we can use the matrix

(0,1/Amax). This is because the function inversion lemma to get an explicit expression (dr— F) " 1
P )Al ZJ M 1 and, subsequently, for the MSD
W= 27T, 52 Z
220N 2u>\
is monotonically increasmg in the intervdl, 1/ A\ a5 ). More- MSD = 7-
over, it evaluates to 0 aj = 0 and becomes unbounded as 1- Z 5t 2#/\

7 — 1/Amax. We therefore conclude that LMS is stable in the

mean- and mean-square senses for all step gizesisfying Both of these steady-state expressions were derived in [5]. Here,
we arrived at the expressions as a byproduct of a framework that

M

<7)\W ) <1 can also handle a variety of data-normalized adaptive filters (see
Pt Section V). In addition, observe how the expressions for MSE
and MSD can be obtained simply by conveniently choosing dif-
D. Steady-State Performance ferent values for the boundary condition, .

Once filter stability has been guaranteed, we can proceed to
derive expressions for the steady-state value of the mean-square
error (MSE) and the mean-square deviation (MSD). To this end,We now consider the normalized LMS algorithm, for which

note that in steady state, we have that for any vestor g(w;) = ¢ + |Ju;||2 with ¢ > 0. For this choice of(u;), recur-
sion (32) becomes

IV. NORMALIZED LMS WITH GAUSSIAN REGRESSORS

Jim B2 = Jim Bl
1—00 1—00

- = | =

Thus, in the limit, (38) leads to Yi=Xin —pE {—6 n ||ﬁi||2} T

lim E|w;||? ps = p’olE|w|% . (47) _ aTa (IS T
Here, 3., = diag@..) denotes the boundary condition of the e+ [l (e + [[ml*) 1
recursion (32), which we are free to choose. Progress in the analysis is now pending on the evaluation of the

Now, in order to evaluate the MSE, we first recall that it isnoments
defined by ala: w2y, ala, |
A22E [7“1 = 2] o g | Bl L (s0)
MSE = lim Ee?(i) e + [ (e + [1m12)

1— 00

Although the individual elements af; are independent, no
which, in view of the independence assumption Al, is also givetosed-form expressions fex andB’ are available. However,

by we can carry out the analysis in terms of these matrices as
. ) follows. First, we argue in Appendix B tha is diagonal. We
MSE = lim E[w;|x. also show that i, is diagonal, then so B’ and that

diag(B’) = B diag(X;+1)
whereB is the diagonal matrix
(wow) (Wow)
(e + [lwil[?)?
5 o Here, the notation® denotes an element-by-element
MSE = p“o, E [I|u1||(1 7) 1)}' (48)  (Hadamard) product. Thus, the successiv&;s in recur-

A more explicit expression for the MSE can be obtained ©§jon (49) will also be diagonal if the boundary condition is.
using the matrix inversion lemma to evaluate the matrix inversaibsequently, as in the LMS case, we can again obtain a recur-

that appears in (48). Doing so leads to the well-known resultSive relation for their diagonal entries of the fobn= Fa;.1,
whereF retains the same form, namely

This is because
Ee} (i) = Eljw; = Ellw;||r = E|wi|3-

Therefore_,to obtain the MSE, we should choasgin (47) so B=F
that (I — F) 5., = A, in which case, we get

.

7y 1272@. F=1I-uA+,°B.
— 1=
MSE = Mo ) Mean-square stability now requires that the step-gizee
1= 21 TN chosen such thak’' is a stable matrix (i.e., all its eigenvalues
1=

The MSD can be calculated along the same lines by noting thztl]tould be strictly inside the unit circle). For NLMS, it can be

N 2 _ B _ 2For two row vectors{x, y}, the quantityx © y is a row vector with the
MSD = ,L-li)nolo Ellwi|” = Lh_glo Eljw;||7 = Lh_}rolo E ;5. elementwise products; see [24].
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verified thaty, < 2 is a sufficient condition for this fact to hold, Moreover, earlier approaches do not seem to handle transpar-

as can be seen from the following argument. ently non-Gaussian regression data, which is discussed later in
ChoosingX; 1 = I, we have Section V.
|2
Blwi|® = Elwillg, +p’os B {%} V. DATA-NORMALIZED FILTERS
3
and We now consider general data-normalized adaptive filters of
the form (26) and drop the Gaussian assumption AG. The anal-
3, =1-pA+u*B. ysis that follows shows how to extend the discussions of the
previous two sections to this general scenario.
Obviously,B’ < A/2 so that Our starting point is the mean and variance relations

27)—(29).
EZ‘SI—[LA-F/J/Zg 2029
A. Mean-Square Analysis

and, hence ) ]
A For arbitrary regression data, we can no longer guarantee that
E|wi1])> < E [ﬁf (I — A+ /1,2§> m} the data moments
uj [[wil [fui v
+12o’E [ﬁ} . b [g[ui]] ’ E{ 92[uj] ]
(e+ flml]?)?

are jointly diagonalizable (as we had, for example, in the case
Now, it is clear thatd < A(A/2) < 1. Moreover, over the of LMS with Gaussian regressors). Consequerilyneed not
interval0 < p < 2, it holds that be diagonal even iE,;, is, i.e., these matrices can no more be

,A A ) A fully characterized by their diagonal elements alone. Still, we
I-pA+p B} < <1 = 20 Amin <5> + 1" Amin <§>> I can perform mean-square analysis by replacing the diag oper-
ation with the vec operation, which transforms a matrix into a

column vector by stacking all its columns on top of each other.
from which we conclude that Let

g
[e%

_ _ u;l|?
Blwinll < oBlwil? + i2ole |l i1 2Vec(Esn).

(e+ flmi?)?
where the scalar coefficient is positive and strictly less than Then, using the Kronecker product notation (e.g., [24]) and the
one for0 < p < 2. It follows that E||w;||?> remains bounded following property, for arbitrary matricegP, @, X}:

for all 4, as desired. It is also straightforward to verify from veq PEQ) = (QF @ P)ved S)
T—
Ew; 1 = {I ME< Ui )] - Ew; itis straightforward to verify that the recursion (28) ¥y trans-
€+ |[ul? forms into the linear vector relation
thatp < 2 guarantees filter stability in the mean as well (just = Foi 1

note thati; " w; /(e + |[u;]|?) is a rank-one matrix whose largest
eigenvalue is smaller than one).
Finally, repeating the discussion we had for the steady—stgt%

where the coefficient matri¥ is now M2 x M? and is given

erformance of LMS, we arrive at the following expressions for A 2
fhe MSE and MSD of normalized LMS: I F=I-pd+uwB (1)
MSE <202 E ||ﬁi||?]—f)1A] with the M? x M? symmetric matrice$A, B} defined by
= g T —— T T
e A=<E [u }®1M>+ <IM®E[“Z' “D
w|? — B [ui] glui]
MSD =202 E (’4‘_“21] B_g [ufuz@@uiTuvx}
e+ |[u]] 92[u]
These expressions hold for arbitrary colored Gaussian regrisparticular,A is positive-definite, and is non-negative-def-
sors. inite. In addition, introduce thé/ x M matrix
The presentation so far illustrates how the energy-conserva- ul'y;
tion approach can be used to perform transient analysis of LMS P=FE [g[uz] }

and its normalized version. Our contribution lies in the ab|llt¥v
to perform the analysis in a unified manner. This can be
preciated, for example, by comparing the analysis of the nor-
malized LMS algorithm in [7], [10], [11], [22], and [23] W|th
the analysis in the previous section. A substantial part of prlor
studies is often devoted to studying the multivariate moments; [H i1 } - E [||ﬁ"||% } 1 120%E iz, Willg,
of (50) and, as a result, eventually resort to some whiteness as- Wittllow e ' ?w]
sumption on the data. Our derivation bypasses this requirement. 52)

hich appears in the mean weight-error recursion (29) and in
1e expression foA.

It follows that in terms of the vec notation, the variance rela-
on (27) becomes
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Now, contrary to the Gaussian LMS case, the makiis no for anyeo of interest, e.g., more commonly,= 1 ore = r,
longer guaranteed to be non-negative-definite. It is shownvherer = veqR).
Appendix A that the conditior1 < A(F) < 1 canbe enforced Moreover, steady-state analysis can be carried out along the

for values ofu in the range same lines of Section IlI-D. Thus, assuming the filter reaches
1 1 steady-state, recursion (52) becomes, in the limit
0 < g < min , 53 2
’ {Amax(A‘lB) max { (L) eIR+}} 3 lim [ % pyo = 1202E {”“i”“w]
1—00 v - oo v 2 .
where the second condition is in terms of the largest positive - g [UZ]_
real eigenvalue of the following block matrix: in terms of the boundary conditiow.,, which we are
free to choose. This expression allows us to evaluate the
A|A/2 —-B/2 N . o
L= I 0 steady-state value oF|jw;||5 for any symmetric weighting
M

o _ _ L S by choosingo.. such that(I — F)o., = vedS). In
when it exists. Sincd. is not symmetric, its eigenvalues mayna ticular, the EMSE corresponds to the chdite= R, i.e.,
not be positive or even real. If does not have any real positive,  _ (I — F)~lveqR). Likewise, the MSD is obtained by
eigenvalue, then the corresponding condition is removed erfHoosingS =1, ie.,0. = (I — F)~'vedI). We summarize
(53), and we only require < 1/Aumax(A~"B). Condition (53) these results in the following statement, which holds for
can be grouped together with the requiremert 2/Amax(P),  arbitrary input distributions and scalar data nonlinearities.

which guarantees convergence in the mean, so that We summarize in the following statement the above results,
2 1 1 which hold for arbitrary input distributions and data nonlinear-
< min , 7 R~
g )\max(P) )‘max(A_lB) max {)\(L) (= I[{+} ities.

(%4) Theorem 2 (Scalar Nonlinearities)Consider an adaptive
Moreover, the same argument that we used in the LMS ca@Eer of the form

in Section Il would show that the transient behavior of data- Wiry = w; 4 uf e(i), i>0
normalized filters is characterized by th&?-dimensional state- a ! Mg[ui] =
space mode: wheree(i) = d(i) — w;w;, andd(i) = w;w® + v(i). Assume
Wir1 = FW; + 202y (55) thatthe sequencd® (i), u;} are iid and mutually independent.
where Then, the filter is stable in the mean and mean-square senses if
0 1 the step-sizg satisfies (54). Moreover, the resulting EMSE and
0 0 1 MSD are given by
o 0 0 1 Iwilltr py-1vear
F=1 . EMSE =420 F U—F)" Veqr)
: 92[ui]
o0 ! sl gy
—po —p1 —P2 ... —PMr-1 MSD =4%0’E (Isz) vearn
with g%[u;]
M1 whereF' is defined by (51). &
A M? k
=det(zI — F) =
p()=det(x =t 4 kZ:O Pt B. Learning Curves

The learning curve of an adaptive filter refers to the time evo-
lution of Ee2(4); its steady-state value is the MSE. Now, since
Ee2(i) = E||lw;||%, the learning curve can be evaluated by com-

denoting the characteristic polynomial®f In addition,)V; and
Y are theM?2x 1 vectors

e (12 : X .
g”’f”t”g puting E||w;||% for eachi. This task can be accomplished re-
A E”’f””go cursively from (52) by choosing the boundary conditi®n |
W= [will7=, asr = vedR). Indeed, iterating (52) with this choice af.;
: and assumingy, = 0, we find that
Bl [|7 2 s |2
L tp(M2-1) 4 u’L||(I+F+...+Fi)T
2 - Elli. 2 = ||lw® 2i 2 2E
(115 R e
2
E (%) that is
luill?o, - 2 2 2 2
Y= E( en ) Bl |2 = wl|2, + 120%b;
: where the vectoa, and the scalab; satisfy the recursions
il e
E <%) a; :Fai,17 a_1=r
] ) w2,
30bserve how the order of the model, in the general casd;%sind not}, b; =b;_1+ F 2—’1 , b1 =0.
as was the case in the previous two sections with Gaussian regressors. g [uz]
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Using these definitions fofa;, b; }, it is easy to verify that or, by incorporating the defining expression (9)iof, (i)

) 21‘ 3\ — 77 N HX /- HX
Eﬁ@+ﬂ=Eﬁ@+Wfﬁmq%+ﬁﬁEPE&}} neli) = Fasu () (e () = 7(0) . (60)
Substituting (60) into (59 d the desired lati
which describes the learning curve of a data-normalized adqagl:—ms ftuting (60) into (59) produces the desired energy relation
tive filter.

- _ . N2 - _ . N2
i1 |3+ s (i) |5 (0)] = il 4w (i) | (0)]
VI. MATRIX NONLINEARITIES

In this section, we extend the earlier results to the case@) Mean-Square Analysis

which the func_tiong[u,-_] is matr_ix-valued_ rather th_an scalar- To perform mean-square analysis, we start with form (59) of
value_d. To motivate this extension, consider the S|gn-regres:ts|% energy relation. Bearing in mind ’the independence assump-
algorithm (e.g., [8]): tion on the noise AN and the fact the) = e, (¢) + v(4), (59)

w1 = w; + psgriu;]”e(i) reads, under expectation

where the sgn operates on the individual elements;ofthis  Ellw; 1[5, = Ellwil3,,, — 2uE [ef ™+ (i)ea(i)] +
is in contrast to the discussions in the previous sections where

2 27N\ 11en (12 2 2 112
all the elements ofi; were normalized by the same data non- Wk [ea(z)”“l”H&HH} + o B [HU’L”HEmH}

linearity. Other examples of matrix nonlinearities can be foung,here the weight was replaced by the time-indexed weight

€.g. in [25]-{27]. Y11 If we further invoke the polarization identity (12), we get
The above update is a special case of more general updatéél' P y(12), we g

of the form eHEi1 (1)e, (1) =||avs) ;MHU?M = ||17;i||1217Tu?_h,2i+1 and
w1 = w; + pH[uw]ul e(q) (56) ea (i) :H"bi”i;"ui'
whereH][u;] denotes a/ x M matrix nonlinearity. These equations, together with the linearity property (11) and
the independence assumption Al, yield the following result.
A. Energy Relation Theorem 3 (Matrix Nonlinearities)Consider an adaptive

We first show how to extend the energy relation of Theoreffiter of the form
1 to the more general class of algorithms (56) with matrix data
nonlinearities. Our starting point is the adaptation equations
(56), which can be written in terms of the weight error vectowheree(i) = d(i) — u,w;, andd(i) = w;w° + v(i). Assume
w; as that the sequencds (i), u; } are iid and mutually independent.
Then, it holds that

w1 = w; + pH[uw;u; e(é), i >0

Wiy1 = w; — pH[wuf e(i). (57)
E’&), 2_ :E’&I,,',Z_-F I/2O'%E u,;2 . 61
By premultiplying both sides of (57) byw; X, we see that the lisalls,,, i, =+ [H HHZ’“H} (61
estimation errors? (i), e (i), ande(i) are related by where
e, (i) = ez (i) — pllul[%ge(d). (58) = =i — pZip E [Hulw;] — pE [l wH] iy
Moreover, the two sides of (57) should have the same weighted- +1*E [||ui||§{2i+lHuiTui] . (62)
energy, i.e.,
. . T In addition, the stability condition and the MSE and MSD ex-
W}y Sy = (w; — pHujuf e(i)) pressions of Theorem 2 apply here as well with B} replaced
X3 (w; — pH[w;Jule(i)) by
so that A= (E[ufuH]®I)+ (I ® E[uf wH))
— Tl T,
113 =Ilil|: — 2pe(iyu; [ S B =Bl uH © w/uH]
+ 122 (i)w;H[u; | EH[u;Jul Moreover, the construction of the learning curve in Section V-B
=|lwi||Z — 2ue=(i)e(i) also extends to this case. &

4220wl 2w (59) Compared with some earlier studies (e.g., [8], [9], [25]), the
‘ above results hold without restricting the regression data to

This form of the energy relation is analogous to (15). As heing Gaussian or white.

stands, (59) is just what we need for mean-square analysis. For

completeness, however, we develop a cleaner form of (59)Ca Sign-Regressor Algorithm

form similar to (10). To this end, notice that upon replaclBg  To illustrate the application of the above results, we return to

by HY in (58), we get the sign-regressor recursion

pllullFrsme(i) = el (1) — e,/ (0) w1 = w; + psgriug]e(i).
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
iteration

Fig. 1. Theoretical and simulated learning and MSD curves for LMS using correlated uniform input data=afc.

In this case, the matrix nonlineariBf[u;] is implicitly defined whereas (63) becomes
by the identity EHﬁ}iJrle — EH'H)z

S, + oM. (65)

u; H[w;] = sgriu]
Amax(2i) < 1 or, equivalently
which in turn means that relations (61) and (62) become

8§ 1
. _ <y/—=.
Blliial},, = Elanllg, + 12026 | Isoul .., | (63) T
and This is the same condition derived in [8].

To evaluate the MSE, we observe from (65) that in steady
Y =i —pXia [Sgr[u,;]Tu,;] —uk [uingr{u,,;]] it state

+1i2E lIsgr{u] |3, ulw;] >
L . e . w2 — uM | lim EleH% = u205M
Assume that the individual entries of the regresasdnave vari- oy i—o0

ances2. In addition, assume that has a Gaussian distribution.so that
Then, it follows from Price’s theorem [29] tHat

2
M
5 MSE = —H%
E [sgnu]"w] = . —R 77(8,—3 —puM

o

which leads to which is again the same expression from [8].

Y =% -y / 2R -y / R21+1 VIl. SIMULATIONS
& Throughout this section, the system to be identified is an FIR

+u2E ||sgr{u,]| SHRRLE u,] . (64) channel of length 4. The input(¢) is generated by passing an
iid uniform process:(7) through a first-order model

Now, observe tharlisgr[ui]HE?_+1 = Tr(X¥;4+1) wheneverX, .,

is diagonal. Thus, assume we chodg.; = I. Then, the ex- (i) = au(i = 1) + z(7). (66)
pression fory; becomes By varying the value ofi, we obtain processes:) of different
colors. We simulate the choices= 0.2 anda = 0.9. The input
Si=T+u (/LM _9 22 ) R sequence that is feeding the adaptive filter therefore has a corre-
Ty lated uniform distribution. The output of the channel is contami-

4 nated by aniid Gaussian additive noise atan SNR level of 30 dB.
The theorem can be used to show that for two jointly zero-mean
Gaussian real-valued random variabteandy, it holds thatE (zsgn(y)) = F'Q.S- 1 and 2 shows the resulting theoretical and simulated
V271 )0, E (xy). learning and MSD curves for both casesaot 0.2 anda =
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1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
iteration

Fig. 2. Theoretical and simulated learning curves for LMS using correlated uniform input data=arid9.

20_ .......... ........ ........... EEEREREEE

simulation :

Sy . l ........ lll . l . B v‘.v:[.
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
n

Fig. 3. Theoretical and simulated EMSE for LMS as a function of the step-size for correlated uniform inpat=with2.

0.9. The simulated curves are obtained by averaging over 206nlinearities, and to tracking analysis are possible and are
experiments, whereas the theoretical curves are obtained froeated in, e.g., [20], [30], and [31].

the state-space model (55). It is seen that there is a good match

between theory and practice. APPENDIX A

Fig. 3 examines the stability bound (54); it plots the filter CONDITION FOR MEAN-SQUARE STABILITY

EMSE as a function of the step size using the theoretical ex-
pression from Theorem 2, in addition to a simulated EMSE. TPE,
bound on the step size is also indicated.

Consider the matrix fornf = I — A + 2B with A > 0,
> 0, andy > 0. We would like to determine conditions on
1 in order to guarantee that the eigenvalueg'dfatisfy—1 <
A(F) < 1.

First, in order to guarante( F') < 1, the step-size should

In this paper, we developed a framework for the transiebe suchthaf" < I or, equivalentlyA— B > 0. This condition
analysis of adaptive filters with general data nonlinearitigs equivalent to requirind — ;LA*WBA**/2 > 0, but since
(both scalar-valued and matrix-valued). The approach relite matricesA™'B andA~'/2BA~*/2 are similar, we conclude
on energy conservation arguments. By suitably choosing ttrat . should satisfy, < 1/Amax(A™'B).
boundary condition of the weighting matrix recursion, we In order to enforce\(F) > —1, the step-sizg: should be
can obtain MSE and MSD results and the conditions fauch thatG(u) = 2T — pA + p2B > 0. Whenyu = 0, the
mean-square stability. We may add that extensions to leadigenvalues oG are positive and equal to 2. Asincreases,
algorithms, affine projection algorithms, filters with errothe eigenvalues off vary continuously withu. Therefore, an

VIIl. CONCLUDING REMARKS
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upper bound on that guarantee&(u) > 0 is determined by
the smallesj that make< () singular.

Now, the determinant of(y) is equal to the determinant of 1]
the block matrix 2]
A2l -pA uB
K(u)—{ I } [3]
Moreover, since (4l
2I 0] ([I 0 A _B
o= 5 (0] [F ) e
the conditiondet(K (1)) = 0 is equivalent talet(I — uL) = 0, 6]
where
A B
212 —3% (7
2[5
In this way, the smallest positiyethat results inlet(K(p)) = 8]
0 is given by
L (9]

< max{)\(L) € IR+}'

This condition is in terms of the largest positive real eigenvaluélo]
of L when it exists. It follows that the following range of

guarantees a stablg, [11]

1 1

0< j<mi :
HS T N (A7TB) max (A(L) € R¥}

(12]

[13]
APPENDIX B

A AND B’ oF (50) ARE DIAGONAL [14]

An off-diagonal entry ofd has the form
20 W;, [15]
A =F | —21 2 |
7 { + ||m||2}

Now, 2u] w;, /e + |[W;]|* is an odd function ofu;, , which has [16]

an even (Gaussian) pdf and is independent of the other elements
ofu;. Thus,E [w;, u;, /e + ||u;||? | w;,] = 0,and henced . is  [17]
zero as well. ThereforeA is diagonal. A similar argument can

be used to prove th@’ is diagonal. Now, a diagonal entry of [1g]
B’ can be written as

o — [19]
[ EIE
P
(e + llm]|2)° [20]
u? _
= — W, ®u;| diag(Z; .
(c + [[ailf2)? 9(Zin) [21]
It follows that
_ [22]
diag(B’) = B diag (i 1)
where [23]
(wow) (u (3 ;) [24]
(e +[lwll?) [25]
[26]
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