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Transient Analysis of Data-Normalized
Adaptive Filters

Tareq Y. Al-Naffouri and Ali H. Sayed, Fellow, IEEE

Abstract—This paper develops an approach to the transient
analysis of adaptive filters with data normalization. Among other
results, the derivation characterizes the transient behavior of such
filters in terms of a linear time-invariant state-space model. The
stability of the model then translates into the mean-square stability
of the adaptive filters. Likewise, the steady-state operation of the
model provides information about the mean-square deviation
and mean-square error performance of the filters. In addition
to deriving earlier results in a unified manner, the approach
leads to stability and performance results without restricting the
regression data to being Gaussian or white. The framework is
based on energy-conservation arguments and does not require an
explicit recursion for the covariance matrix of the weight-error
vector.

Index Terms—Adaptive filter, data nonlinearity, energy-con-
servation, feedback analysis, mean-square-error, stability,
steady-state analysis, transient analysis.

I. INTRODUCTION

A DAPTIVE filtersare,bydesign, time-variantandnonlinear
systems that adapt to variations in signal statistics and that

learn from their interactions with the environment. The success
of their learning mechanism can be measured in terms of how fast
they adapt to changes in the signal characteristics and how well
they can learn given sufficient time (e.g., [1]–[3]). It is therefore
typical tomeasuretheperformanceofanadaptivefilter in termsof
both its transient performance and its steady-state performance.
The former is concerned with the stability and convergence rate
of an adaptive scheme, whereas the latter is concerned with the
mean-square error that is left in steady state.

There have been extensive works in the literature on the per-
formance of adaptive filters with many ingenious results and
approaches (e.g., [1]–[11]). However, it is generally observed
that most works study individual algorithms separately. This is
because different adaptive schemes have different nonlinear up-
date equations, and the particularities of each case tend to re-
quire different arguments and assumptions.

In recent works [12]–[15], a unified energy-based approach
to the steady-state and tracking performance of adaptive filters
has been developed that makes it possible not only to treat algo-
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rithms uniformly but also to arrive at new performance results.
This approach is based on studying the energy flow through each
iteration of an adaptive filter, and it relies on an exact energy
conservation relation that holds for a large class of adaptive fil-
ters. This relation has been originally developed in [16]–[19] in
the context of robustness analysis of adaptive filters within a de-
terministic framework. It has since then been used in [12]–[15]
as a convenient tool for studying the steady-state performance
of adaptive filters within a stochastic framework as well. In this
paper, we show how to extend the energy-based approach to the
transientanalysis (as opposed to thesteady-stateanalysis) of
adaptive filters. Such an extension is desirable since it would
allow us, just as in the steady-state case, to bring forth sim-
ilar benefits such as the convenience of a unified treatment, the
derivation of stability and convergence results, and the weak-
ening of some assumptions.

In a companion article [20], we similarly extend the energy-
conservation approach to study the transient behavior of adap-
tive filters with error nonlinearities.

A. Contributions of the Work

The main contributions of the paper are as follows.

a) In thenextsection,we introduceweightedestimationerrors
aswellasweightedenergynormsandrelatethesequantities
through a fundamental energy relation. The main results of
this section are summarized in Theorem 1.

b) In Sections III and IV, we illustrate the mechanism of our
approach for transient analysis by applying it to the LMS
algorithm and its normalized version for Gaussian regres-
sors.

c) In Section V, we study the general case of adaptive algo-
rithms with data nonlinearities without imposing restric-
tions on the color of the regression data (i.e., without re-
quiring the regression data to be Gaussian or white). The
analysis leads to stability results and closed-form expres-
sions for the MSE and MSD. The main results are sum-
marized in Theorem 2.

d) In Section VI, we extend our study to include adaptive
filters that employ matrix data nonlinearities. We again
derive stability results and closed-form expressions for
the MSE and MSD. The main results are summarized in
Theorem 3.

The statements of Theorems 1–3 constitute the contributions
of this work.

B. Notation

We focus on real-valued data, although the extension to
complex-valued data is immediate. Small boldface letters are
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TABLE I
EXAMPLES OF DATA NONLINEARTIES g[�] ORH[�]

used to denote vectors, e.g.,, and the symbol denotes
transposition. The notation denotes the squared Eu-
clidean norm of a vector , whereas denotes
the weighted squared Euclidean norm . All
vectors are column vectors except for a single vector, namely,
the input data vector denoted by, which is taken to be a row
vector. The time instant is placed as a subscript for vectors and
between parentheses for scalars, e.g.,and .

C. Adaptive Filters With Data Nonlinearities

Consider noisy measurements that arise from the
model

for some 1 unknown vector that we wish to estimate,
and where accounts for measurement noise and modeling
errors, and denotes arow regression vector. Both and
are stochastic in nature. Many adaptive schemes have been de-
veloped in the literature for the estimation of in different
contexts. Most of these algorithms fit into the general descrip-
tion

(1)

where is an estimate for at iteration , is the step-size

(2)

is the estimation error, and denotes a generic function
of and the regression vector.

In terms of the weight-error vector , the adap-
tive filter (1) and (2) can be equivalently rewritten as

(3)

and

(4)

We restrict our attention in this paper to nonlinearities
that can be expressed in theseparableform

(5)

for some positive scalar-valued function . In the latter part
of this paper (see Section VI), matrix nonlinearities will
also be considered, i.e., functions of the form

Table I lists some examples of data nonlinearities
that appear in the literature. In the table, the notation

refers to the entries of the regressor vector
.

II. WEIGHTED ENERGY RELATION

The adaptive filter analysis in future sections is based on an
energy-conservation relation that relates the energies of several
error quantities. To derive this relation, we first define some
useful weighted errors. Thus, letdenote any symmetric posi-
tive definite weighting matrix and define the weighted
a priori anda posteriorierror signals

(6)

For , we use the more standard notation

The freedom in selecting will enable us to perform different
kinds of analyses. For now, will simply denote an arbitrary
weighting matrix.

A. Energy-Conservation Relation

The energy relation that we seek is one that relates the ener-
gies of the following error quantities:

(7)

To arrive at the desired relation, we premultiply both sides of the
adaptation equation (3) by and incorporate the definitions
(6). This results in an equality that relates the estimation errors

, , and , namely

(8)
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where we introduced, for compactness of notation, the scalar
quantity

if

otherwise.
(9)

Using (8), the nonlinearity can be eliminated from
(3), yielding the following relation between the errors in (7):

From this equation, it follows that the weighted energies of these
errors are related by

or, more compactly, after expanding and grouping terms, by the
following energy-conservationidentity

(10)

This result isexactfor any adaptive algorithm described by (3),
i.e., for any nonlinearity , and it has been derived without
any approximations, and no restrictions have been imposed on
the symmetric weighting matrix .

The result (10) with was developed in [16]–[18] in
the context of robustness analysis of adaptive filters, and it was
later used in [12]–[15] in the context of steady-state and tracking
analysis. The incorporation of a weighting matrixallows us to
perform transient analyzes as well, as we will discuss in future
sections.

B. Algebra of Weighted Norms

Before proceeding, it is convenient for the subsequent discus-
sion to list some algebraic properties of weighted norms. There-
fore, let and be scalars, and let and be symmetric
matrices of size . Then, the following properties hold.

1) Superposition.

(11)

2) Polarization.

(12)

3) Independence.If and are independent random vec-
tors, then the polarization property gives

where the last equality is true when and are con-
stant matrices.

4) Linear transformation. For any matrix

5) Orthogonal transformation. If is orthogonal, it is
easy to see that

(13)

6) Blindness to asymmetry.The weighted sum of squares
is blind to any asymmetry in the weight i.e.,

(14)

7) Notational convention.We will often write

vec

where vec is obtained by stacking all the columns
of into a vector. For the special case whenis diag-
onal, it suffices to collect the diagonal entries of into
a vector, and we thus write

diag

C. Data-Normalized Filters

We now examine the simplifications that occur when is
restricted to the form (5). Upon replacing in (10) by its
equivalent expression (8) and expanding, we get

(15)

To proceed, we replace , as defined in (4), by

Then, (15) becomes

(16)

Now, note that and can be expressed as some
weighted norms of . Indeed, from (12), we have

(17)

and, subsequently

(18)

Upon substituting (17) and (18) into (16), we get

This relation can be written more compactly by using the super-
position property (11) to group the various weighted norms of
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into one term, namely

(19)

where

(20)

The only role that plays is a weight in the quadratic form
. Hence, and in view of (14), we can replace the defining

expression (20) for by its symmetric part

(21)

Finally, it is straightforward to conclude from the weight-error
recursion

and from that

(22)

D. Weighted Variance Relation

A few comments are in place.

1) First, the pair (19) and (21) is equivalent to the energy
relation (10) and, hence, is exact.

2) This pair represents the starting point for various types of
analyzes of adaptive filters with data normalization.

3) As it stands, the energy relation (19)–(21) cannot be prop-
agated in time since it requires a recursion describing the
evolution of . However, this complication can be re-
moved by introducing the following reasonable assump-
tion on the noise sequence:

AN. The noise sequence is zero-mean, iid and is
independent of .

This assumption renders the third term of (19) zero-
mean, and (19) simplifies under expectation to

(23)

Likewise, (22) simplifies to

(24)

While the iterated relation (23) is compact, it is still hard
to propagate since is dependent on the data so that
the evaluation of the expectation is not trivial
in general.

d) For this reason, we shall contend ourselves with the inde-
pendence assumption.

AI. The sequence of vectors is iid.

This condition enables us to the split the expectation in (23)
as

(25)

Observe that the weighting matrix for is now given by the ex-
pectation . As we will soon see, the above equality renders
the issue of transient and stability analyses of an adaptive filter
equivalent to a multivariate computation of certain moments.

In order to emphasize the fact that the weighting matrix
changes from to according to (21), we will attach a
time index to the weighting matrices and use (21) and (25) to
write more explicitly

where we replaced by and by , which is now
defined by

Note that this recursion runs backward in time, and its boundary
condition will therefore be specified at . Moreover, can be
verified to be positive definite.

Likewise, applying the independence assumption AI to the
right-hand side of (24), we find that

with the expectation on the right-hand side of (24) split into the
product of two expectations.

e) Inspection of recursions (19) and (23) reveals that the iid
assumption (AN) on the noise sequence is critical. Indeed, while
(23) can be propagated in time without the independence as-
sumption AI, it is not possible to do the same for (19). Fortu-
nately, assumption AN is, in general, reasonable.

We summarize in the following statement the variance and
mean recursions that will form the basis of our transient anal-
ysis.

Theorem 1 (Weighted-Variance Relation):Consider an adap-
tive filter of the form

(26)

where , and . Assume
that the sequences are iid and mutually independent.
For any given , it holds that

(27)

where is constructed from via

(28)
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It also holds that the mean weight-error vector satisfies

(29)

The purpose of the sections that follow is to show how the
above variance and mean recursions can be used to study the
transient performance of adaptive schemes with data nonlinear-
ities. In particular, we will show how the freedom in selecting
the weighting matrix can be used advantageously to de-
rive several performance measures.

First, however, we shall illustrate the mechanism of our anal-
ysisbyconsidering twospecialcasesforwhichresultsarealready
available in the literature.Morespecifically, we will start with the
transient analysis of LMS and normalized LMS algorithms for
Gaussian regression data in Sections III and IV. Once the main
ideas have been illustrated in this manner, we will then describe
our general procedure in Section V, which applies to adaptive fil-
ters with more general data normalizations, as well as to regres-
sion data that are not restricted to being Gaussian or white.

E. Change of Variables

In the meantime, we remark that sometimes it is useful to
employ a convenient change of coordinates, especially when
dealing with Gaussian regressors. Thus, let denote
the covariance matrix of and introduce its eigendecomposi-
tion

where is orthogonal, and is a positive diagonal matrix with
entries . Define further

(30)

In view of the orthogonal transformation property (13), we have

and

Moreover, assuming that the nonlinearity is invariant under
orthogonal transformations, i.e., (e.g.,
or ), we find that the variance relation (27) retains
the same form, namely

(31)

By premultiplying both sides of (28) by and post-multiplying
by , we similarly see that (28) also retains the same form

(32)

Likewise, (29) becomes

(33)

III. LMS W ITH GAUSSIAN REGRESSORS

Consider the LMS algorithm for which and assume
the following.

AG. The regressors arise from a Gaussian distribution
with covariance matrix .

In this case, the data dependent moments that appear in
(31)–(33) are given by

Tr

Therefore, for LMS, recursions (31) and (32) simplify to

(34)

and

Tr (35)

while (33) becomes

(36)

Now, observe that in recursion (35), will be diagonal if
is. Therefore, in order for all successives to be diagonal

it is sufficient to assume that the boundary condition for the
recursion for is taken as diagonal. In this way, thes will be
completely characterized by their diagonal entries. This prompts
us to define the column vectors

diag and diag

In terms of these vectors, the matrix recursion (35) can be re-
placed by the more compact vector recursion

or

(37)

where

The matrix describes the dynamics by which the weighting
matrices evolve in time, and its eigenstructure turns out to
be essential for filter stability. Using the fact that ,
we can rewrite (34) using a compact vector weighting notation

(38)

Recursions (36)–(38) describe the transient behavior of LMS,
and conclusions about mean-square stability and mean-square
performance are now possible.

In transient analysis, we are interested in the time evo-
lution of the expectations or, equivalently,

since and are related via the orthogonal
matrix . We start with the mean behavior.

A. Mean Behavior and Mean Stability

From (36) we find that the filter is convergent in the mean if,
and only if, the step-size satisfies

(39)

where is the largest eigenvalue of.

B. Mean-Square Behavior

The evolution of can be deduced from
the variance recursion (34) if is chosen as (or,
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equivalently, ). This corresponds to choosing in
(38) as a column vector with unit entries, which is denoted by

Now, we can see from (38) that

(40)

which shows that in order to evaluate , we need
with a weighting matrix equal to . Now,

can be deduced from (38) by setting ,
i.e.,

(41)

Again, in order to evaluate , we need

with weighting . This term can be deduced from (38) by
choosing

(42)

and a new term with weighting matrix appears. Fortunately,
this procedure terminates in view of the Cayley–Hamilton the-
orem. Thus, let denote the characteristic
polynomial of ; it is an th-order polynomial in

with coefficients . The Cayley–Hamilton theorem
states that every matrix satisfies its characteristic equation, i.e.,

, which allows us to conclude that

(43)

We can now collect the above results into a single recursion by
writing (40)–(43) as

...
...

... ...

If we define the vector and matrix quantities as indi-
cated above, then the recursion can be rewritten more compactly
as

(44)

We therefore find that the transient behavior of LMS is de-
scribed by the -dimensional state-space recursion (44) with

coefficient matrix .1 The evolution of the top entry of cor-
responds to the mean-square deviation of the filter. Observe fur-
ther that the eigenvalues of coincide with those of .

It is worth remarking that the same derivation that led to (44)
with defined in terms of the unity vectorcan be repeated
for any other choice of , say for some , to
conclude that the same recursion (44) still holds withreplaced
by . For instance, if we choose , then the top entry of the
resulting state vector will correspond to the learning curve
of the adaptive filter. In Section V-B we will use this remark
to describe more fully the learning behavior of adaptive filters
with data normalizations.

C. Mean-Square Stability

From the results in the above two sections, we conclude that
the LMS filter will be stable in the mean and mean-square senses
if, and only if, satisfies (39) and guarantees the stability of
the matrix (i.e., all the eigenvalues of should lie inside the
unit circle). Since is easily seen to be non-negative definite
in this case, we only need to worry about guaranteeing that its
eigenvalues be smaller than unity.

Let us write in the form

where the matrices and are both positive-definite and given
by

(45)

It follows from the argument in Appendix A that the eigenvalues
of will be upper bounded by one if, and only if, the parameter

satisfies

(46)

in terms of the maximum eigenvalue of (all eigenvalues
of are real and positive). The above upper bound oncan
also be interpreted as the smallest positive scalarthat makes

singular. Let us denote this value ofby .
Combining (46) with (39), we find that should satisfy

We can be more specific about and show that it is smaller
than . Actually, we can characterize in terms of
the eigenvalues of as follows. Using the definitions (45) for

and , it can be verified that for all

The values of that result in
should therefore satisfy

1To be more precise, the transient behavior of LMS is described by the com-
bination of both (44) and recursion (36).
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i.e.,

This equality has a unique solution inside the interval
. This is because the function

is monotonically increasing in the interval . More-
over, it evaluates to 0 at and becomes unbounded as

. We therefore conclude that LMS is stable in the
mean- and mean-square senses for all step sizessatisfying

D. Steady-State Performance

Once filter stability has been guaranteed, we can proceed to
derive expressions for the steady-state value of the mean-square
error (MSE) and the mean-square deviation (MSD). To this end,
note that in steady state, we have that for any vector

Thus, in the limit, (38) leads to

(47)

Here, diag denotes the boundary condition of the
recursion (32), which we are free to choose.

Now, in order to evaluate the MSE, we first recall that it is
defined by

MSE

which, in view of the independence assumption AI, is also given
by

MSE

This is because

Therefore, to obtain the MSE, we should choose in (47) so
that , in which case, we get

MSE (48)

A more explicit expression for the MSE can be obtained by
using the matrix inversion lemma to evaluate the matrix inverse
that appears in (48). Doing so leads to the well-known result

MSE

The MSD can be calculated along the same lines by noting that

MSD

The above means that in order to obtain an expression for
the MSD, we should now choose in (47) such that

, which yields

MSD

Just like the expression for the MSE, we can use the matrix
inversion lemma to get an explicit expression for
and, subsequently, for the MSD

MSD

Both of these steady-state expressions were derived in [5]. Here,
we arrived at the expressions as a byproduct of a framework that
can also handle a variety of data-normalized adaptive filters (see
Section V). In addition, observe how the expressions for MSE
and MSD can be obtained simply by conveniently choosing dif-
ferent values for the boundary condition .

IV. NORMALIZED LMS WITH GAUSSIAN REGRESSORS

We now consider the normalized LMS algorithm, for which
with . For this choice of , recur-

sion (32) becomes

(49)

Progress in the analysis is now pending on the evaluation of the
moments

(50)

Although the individual elements of are independent, no
closed-form expressions for and are available. However,
we can carry out the analysis in terms of these matrices as
follows. First, we argue in Appendix B that is diagonal. We
also show that if is diagonal, then so is and that

diag diag

where is the diagonal matrix

Here, the notation denotes an element-by-element
(Hadamard) product.2 Thus, the successive s in recur-
sion (49) will also be diagonal if the boundary condition is.
Subsequently, as in the LMS case, we can again obtain a recur-
sive relation for their diagonal entries of the form ,
where retains the same form, namely

Mean-square stability now requires that the step-sizebe
chosen such that is a stable matrix (i.e., all its eigenvalues
should be strictly inside the unit circle). For NLMS, it can be

2For two row vectorsfx;yg, the quantityx � y is a row vector with the
elementwise products; see [24].
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verified that is a sufficient condition for this fact to hold,
as can be seen from the following argument.

Choosing , we have

and

Obviously, so that

and, hence

Now, it is clear that . Moreover, over the
interval , it holds that

from which we conclude that

where the scalar coefficient is positive and strictly less than
one for . It follows that remains bounded
for all , as desired. It is also straightforward to verify from

that guarantees filter stability in the mean as well (just
note that is a rank-one matrix whose largest
eigenvalue is smaller than one).

Finally, repeating the discussion we had for the steady-state
performance of LMS, we arrive at the following expressions for
the MSE and MSD of normalized LMS:

MSE

MSD

These expressions hold for arbitrary colored Gaussian regres-
sors.

The presentation so far illustrates how the energy-conserva-
tion approach can be used to perform transient analysis of LMS
and its normalized version. Our contribution lies in the ability
to perform the analysis in a unified manner. This can be ap-
preciated, for example, by comparing the analysis of the nor-
malized LMS algorithm in [7], [10], [11], [22], and [23] with
the analysis in the previous section. A substantial part of prior
studies is often devoted to studying the multivariate moments
of (50) and, as a result, eventually resort to some whiteness as-
sumption on the data. Our derivation bypasses this requirement.

Moreover, earlier approaches do not seem to handle transpar-
ently non-Gaussian regression data, which is discussed later in
Section V.

V. DATA-NORMALIZED FILTERS

We now consider general data-normalized adaptive filters of
the form (26) and drop the Gaussian assumption AG. The anal-
ysis that follows shows how to extend the discussions of the
previous two sections to this general scenario.

Our starting point is the mean and variance relations
(27)–(29).

A. Mean-Square Analysis

For arbitrary regression data, we can no longer guarantee that
the data moments

are jointly diagonalizable (as we had, for example, in the case
of LMS with Gaussian regressors). Consequently,need not
be diagonal even if is, i.e., these matrices can no more be
fully characterized by their diagonal elements alone. Still, we
can perform mean-square analysis by replacing the diag oper-
ation with the vec operation, which transforms a matrix into a
column vector by stacking all its columns on top of each other.

Let

vec

Then, using the Kronecker product notation (e.g., [24]) and the
following property, for arbitrary matrices :

vec vec

it is straightforward to verify that the recursion (28) for trans-
forms into the linear vector relation

where the coefficient matrix is now and is given
by

(51)

with the symmetric matrices defined by

In particular, is positive-definite, and is non-negative-def-
inite. In addition, introduce the matrix

which appears in the mean weight-error recursion (29) and in
the expression for .

It follows that in terms of the vec notation, the variance rela-
tion (27) becomes

(52)
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Now, contrary to the Gaussian LMS case, the matrixis no
longer guaranteed to be non-negative-definite. It is shown in
Appendix A that the condition can be enforced
for values of in the range

(53)

where the second condition is in terms of the largest positive
real eigenvalue of the following block matrix:

when it exists. Since is not symmetric, its eigenvalues may
not be positive or even real. If does not have any real positive
eigenvalue, then the corresponding condition is removed from
(53), and we only require . Condition (53)
can be grouped together with the requirement ,
which guarantees convergence in the mean, so that

(54)
Moreover, the same argument that we used in the LMS case
in Section III would show that the transient behavior of data-
normalized filters is characterized by the -dimensional state-
space model:3

(55)

where

...

with

denoting the characteristic polynomial of. In addition, and
are the 1 vectors

...

...

3Observe how the order of the model, in the general case, isM and notM ,
as was the case in the previous two sections with Gaussian regressors.

for any of interest, e.g., more commonly, or ,
where vec .

Moreover, steady-state analysis can be carried out along the
same lines of Section III-D. Thus, assuming the filter reaches
steady-state, recursion (52) becomes, in the limit

in terms of the boundary condition , which we are
free to choose. This expression allows us to evaluate the
steady-state value of for any symmetric weighting

by choosing such that vec . In
particular, the EMSE corresponds to the choice , i.e.,

vec . Likewise, the MSD is obtained by
choosing , i.e., vec . We summarize
these results in the following statement, which holds for
arbitrary input distributions and scalar data nonlinearities.

We summarize in the following statement the above results,
which hold for arbitrary input distributions and data nonlinear-
ities.

Theorem 2 (Scalar Nonlinearities):Consider an adaptive
filter of the form

where , and . Assume
that the sequences are iid and mutually independent.
Then, the filter is stable in the mean and mean-square senses if
the step-size satisfies (54). Moreover, the resulting EMSE and
MSD are given by

EMSE
vec

MSD
vec

where is defined by (51).

B. Learning Curves

The learning curve of an adaptive filter refers to the time evo-
lution of ; its steady-state value is the MSE. Now, since

, the learning curve can be evaluated by com-
puting for each . This task can be accomplished re-
cursively from (52) by choosing the boundary condition
as vec . Indeed, iterating (52) with this choice of
and assuming , we find that

that is

where the vector and the scalar satisfy the recursions
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Using these definitions for , it is easy to verify that

which describes the learning curve of a data-normalized adap-
tive filter.

VI. M ATRIX NONLINEARITIES

In this section, we extend the earlier results to the case in
which the function is matrix-valued rather than scalar-
valued. To motivate this extension, consider the sign-regressor
algorithm (e.g., [8]):

sgn

where the sgn operates on the individual elements of. This
is in contrast to the discussions in the previous sections where
all the elements of were normalized by the same data non-
linearity. Other examples of matrix nonlinearities can be found,
e.g., in [25]–[27].

The above update is a special case of more general updates
of the form

(56)

where denotes an matrix nonlinearity.

A. Energy Relation

We first show how to extend the energy relation of Theorem
1 to the more general class of algorithms (56) with matrix data
nonlinearities. Our starting point is the adaptation equations
(56), which can be written in terms of the weight error vector

as

(57)

By premultiplying both sides of (57) by , we see that the
estimation errors , , and are related by

(58)

Moreover, the two sides of (57) should have the same weighted-
energy, i.e.,

so that

(59)

This form of the energy relation is analogous to (15). As it
stands, (59) is just what we need for mean-square analysis. For
completeness, however, we develop a cleaner form of (59): a
form similar to (10). To this end, notice that upon replacing
by in (58), we get

or, by incorporating the defining expression (9) of

(60)

Substituting (60) into (59) produces the desired energy relation
form

B. Mean-Square Analysis

To perform mean-square analysis, we start with form (59) of
the energy relation. Bearing in mind the independence assump-
tion on the noise AN and the fact that , (59)
reads, under expectation

where the weight was replaced by the time-indexed weight
. If we further invoke the polarization identity (12), we get

and

These equations, together with the linearity property (11) and
the independence assumption AI, yield the following result.

Theorem 3 (Matrix Nonlinearities):Consider an adaptive
filter of the form

where , and . Assume
that the sequences are iid and mutually independent.
Then, it holds that

(61)

where

(62)

In addition, the stability condition and the MSE and MSD ex-
pressions of Theorem 2 apply here as well with replaced
by

Moreover, the construction of the learning curve in Section V-B
also extends to this case.

Compared with some earlier studies (e.g., [8], [9], [25]), the
above results hold without restricting the regression data to
being Gaussian or white.

C. Sign-Regressor Algorithm

To illustrate the application of the above results, we return to
the sign-regressor recursion

sgn
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Fig. 1. Theoretical and simulated learning and MSD curves for LMS using correlated uniform input data anda = 0:2.

In this case, the matrix nonlinearity is implicitly defined
by the identity

sgn

which in turn means that relations (61) and (62) become

sgn (63)

and

sgn sgn

sgn

Assume that the individual entries of the regressorhave vari-
ance . In addition, assume that has a Gaussian distribution.
Then, it follows from Price’s theorem [29] that4

sgn

which leads to

sgn (64)

Now, observe thatsgn Tr whenever
is diagonal. Thus, assume we choose . Then, the ex-
pression for becomes

4The theorem can be used to show that for two jointly zero-mean
Gaussian real-valued random variablesx andy, it holds thatE (xsgn(y)) =
2=�1=� E (xy).

whereas (63) becomes

(65)

It is now easy to verify that converges, provided that
or, equivalently

This is the same condition derived in [8].
To evaluate the MSE, we observe from (65) that in steady

state

so that

MSE

which is again the same expression from [8].

VII. SIMULATIONS

Throughout this section, the system to be identified is an FIR
channel of length 4. The input is generated by passing an
iid uniform process through a first-order model

(66)

By varying the value of , we obtain processes of different
colors. We simulate the choices and . The input
sequence that is feeding the adaptive filter therefore has a corre-
lated uniform distribution. The output of the channel is contami-
nated by an iid Gaussian additive noise at an SNR level of 30 dB.

Figs. 1 and 2 shows the resulting theoretical and simulated
learning and MSD curves for both cases of and
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Fig. 2. Theoretical and simulated learning curves for LMS using correlated uniform input data anda = 0:9.

Fig. 3. Theoretical and simulated EMSE for LMS as a function of the step-size for correlated uniform input witha = 0:2.

. The simulated curves are obtained by averaging over 200
experiments, whereas the theoretical curves are obtained from
the state-space model (55). It is seen that there is a good match
between theory and practice.

Fig. 3 examines the stability bound (54); it plots the filter
EMSE as a function of the step size using the theoretical ex-
pression from Theorem 2, in addition to a simulated EMSE. The
bound on the step size is also indicated.

VIII. C ONCLUDING REMARKS

In this paper, we developed a framework for the transient
analysis of adaptive filters with general data nonlinearities
(both scalar-valued and matrix-valued). The approach relies
on energy conservation arguments. By suitably choosing the
boundary condition of the weighting matrix recursion, we
can obtain MSE and MSD results and the conditions for
mean-square stability. We may add that extensions to leaky
algorithms, affine projection algorithms, filters with error

nonlinearities, and to tracking analysis are possible and are
treated in, e.g., [20], [30], and [31].

APPENDIX A
CONDITION FOR MEAN-SQUARE STABILITY

Consider the matrix form with ,
, and . We would like to determine conditions on

in order to guarantee that the eigenvalues ofsatisfy
.

First, in order to guarantee , the step-size should
be such that or, equivalently, . This condition
is equivalent to requiring , but since
the matrices and are similar, we conclude
that should satisfy .

In order to enforce , the step-size should be
such that When , the
eigenvalues of are positive and equal to 2. As increases,
the eigenvalues of vary continuously with . Therefore, an
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upper bound on that guarantees is determined by
the smallest that makes singular.

Now, the determinant of is equal to the determinant of
the block matrix

Moreover, since

the condition is equivalent to ,
where

In this way, the smallest positivethat results in
is given by

This condition is in terms of the largest positive real eigenvalue
of when it exists. It follows that the following range of
guarantees a stable,

APPENDIX B
AND OF (50) ARE DIAGONAL

An off-diagonal entry of has the form

Now, is an odd function of , which has
an even (Gaussian) pdf and is independent of the other elements
of . Thus, , and hence, is
zero as well. Therefore, is diagonal. A similar argument can
be used to prove that is diagonal. Now, a diagonal entry of

can be written as

diag

It follows that

diag diag

where
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