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Abstract

This paper considers the effect of spatial correlation between transmit antennas on the sum-rate capac-
ity of the MIMO broadcast channel (i.e., downlink of a cellular system). Specifically, for a system with
a large number of users n, we analyze the scaling laws of the sum-rate for the dirty paper coding and for
different types of beamforming transmission schemes. When the channel is i.i.d., it has been shown that
for large n, the sum rate is equal to M loglogn + M log % + o(1) where M is the number of transmit
antennas, P is the average signal to noise ratio, and o(1) refers to terms that go to zero as n — oo. When
the channel exhibits some spatial correlation with a covariance matrix R (non-singular with ¢tr(R) = M),
we prove that the sum rate of dirty paper coding is M loglog n+ M log 4~ +log det(R)+o(1). We further
show that the sum-rate of various beamforming schemes achieves M loglog n+ M log % + M logc+o(1)
where ¢ < 1 depends on the type of beamforming. We can in fact compute ¢ for random beamforming
proposed in [24] and more generally, for random beamforming with precoding in which beams are pre-
multiplied by a fixed matrix. Simulation results are presented at the end of the paper.

Key Words: broadcast channel, channel state information, transmit correlation, multi-user diversity, wire-
less communications.

1 Introduction

Multiple input multiple output (MIMO) communication has been the focus of a lot of research which basically
demonstrated that the capacity of a point to point MIMO link increases linearly with the number of transmit
and receive antennas. Research focus has shifted recently to the role of multiple antennas in multiuser sys-
tems, especially broadcast scenarios (i.e., one to many communication) as downlink scheduling is the major
bottleneck for future broadband wireless networks. An overview of the research on this problem can be found
in [26, 1].

In these scenarios, when multiple users are present, one is usually interested in 1) quantifying the max-
imum possible sum rate to all users and 2) devising computationally efficient algorithms for capturing most
of this rate [35]. The first question was settled recently by using a technique similar to writing on dirty pa-
per and hence known as dirty paper coding (DPC). While DPC solves the broadcast problem optimally, it is
computationally expensive and requires a great deal of feedback as the transmitter needs perfect channel state
information for all users [1].

There has been increased interest recently to devise simple techniques that utilize multiuser diversity and
achieve a sum-rate close to the sum-rate capacity of the MIMO broadcast channel (see, e.g., [23, 24, 15, 9,
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101). The scheme proposed in [24], known as opportunistic multiple random beamforming (or concisely ran-
dom beamforming), has been proved to asymptotically maximize the sum-rate (or throughput) of the downlink
of single antenna cellular systems by transmitting to the users with the best channel conditions for a given set
of random beams. The gain of this and other beamforming schemes can be attributed to multiuser diversity—
each user experiences a different channel and therefore the transmitter can exploit this variation and choose
the users that have the best channel conditions. Clearly, the multiuser gain would be specially magnified when
the channels between the transmitter and the users are changing independently.

In this paper we focus on a multi-antenna downlink channel in the presence of correlation between transmit
antennas. This correlation is caused by local scatterers around the base station or the fact that the transmit
antennas in the base station are not spaced far enough to create independent channels. The overriding question
then is to analyze the effect of this correlation on the sum-rate of DPC and various beamforming scheduling
techniques.

Specifically, we consider three variations of random beamforming, namely, random beamforming with
channel whitening, beamforming with general precoding, and deterministic beamforming. In the first, the
transmitter spatially whitens the channel and then uses random beamforming. In random beamforming with
precoding, the transmitter employs a more general precoding matrix. In both of these transmission schemes,
the transmitted signal needs to be scaled properly to maintain the average power constraint. Finally, in deter-
ministic beamforming, as its names suggests, we use a fixed beamformer for all channel uses in place of the
randomly varying one.

When the number of users is large and there is no correlation, the sum rate for DPC and random beam-
forming asymptotically coincide [24]

P
R:Mloglogn—I—MlogM—i-o(l) Q)

where n is the number of users, M is the number of transmit antennas, and P is the average signal to noise
ratio, and o(1) represents terms that go to zero as n — oo. It turns out that this is not case for the channel
with transmit correlation. In this case, the sum-rate can be written as

P
Mloglogn—l—MlogM+Mlogc+0(1) 2

where the constant ¢ < 1 (which refers to the sum-rate loss due to correlation) depends on the scheduling
scheme and the eigenvalues of the covariance matrix R.

The paper is organized as follows. After introducing the channel model in the next section, we review in
Section 3 the different scheduling schemes studied in this paper. We obtain the scaling law of the sum-rate for
DPC and random beamforming schemes in Section 4 and 5, respectively. Section 5.2, which is the heart of the
paper, is devoted to deriving the scaling law of random beamforming in a spatially correlated environment.
We use this result to derive the scaling laws for random beamforming with precoding and for deterministic
beamforming. We conclude the paper with simulations and conclusions.

2 Channe Model and Problem Formulation

In this paper we consider a multi-antenna Gaussian broadcast channel with n receivers equipped with one
antenna and a transmitter (base station) with M antennas. Let S(¢) be the M x 1 vector of the transmit
symbols at time slot ¢, and let Y;(¢) be the received signal at the ’th receiver. We can then write the received
signal at the 4’th user as

Yi(t) = VPH;S(t) + W;, i=1,...,n, ©)

where W; is the additive noise which is complex Gaussian with zero mean and unit variance, CN (0, 1).
Moreover, S(t) is the transmit symbol satisfying the power constraint £{S*S} = 1. Here P denotes the



average transmit power (or equivalently the average SNR considering the normalization of the variances for
channel and noise).

The channel H; is a 1 x M complex channel vector, known perfectly to the receiver, and distributed as
CN(0, R). The M x M covariance matrix R is a measure of the spatial correlation and is assumed to be non-
singular with ¢tr(R) = M 1. We also assume that H; follows a block fading model, i.e., it remains constant
during a coherence interval T" and varies independently from one such interval to the next. We finally note
that the channel is identically distributed across users but is independent from one user to another.

Denoting the average rate of the i’the user by R; over all the channel realizations, we are interested in
analyzing the behavior of the sum-rate, i.e., 2?:1 R;, of downlink for large n.

In the following section, we review the scheduling schemes that will be considered in this paper.

3 Review of Transmission Schemesin the Downlink

3.1 Dirty Paper Coding (DPC)

The capacity region of the multi-antenna broadcast channel is achieved by dirty paper coding when full chan-
nel state information (CSI) is available to the transmitter and users. Intuitively, if the transmitter knows the
channels of all users, it can use DPC to pre-subtract the interference for each user while preserving the aver-
age power constraint [35]. More precisely, the sum rate capacity, Rppc, can be written as (see [15] and the
references therein),

n
Rppc =F {{Pl,...,lrﬂg?z);(agp} log det (1 + Z HZ*PZHZ) } (4)

=1

In a system with a large number of users n, and for fixed M and P, it has been shown that the sum-rate of
DPC behaves as in (1),

P
Rppc = M loglogn + MlogM + o(1), (5)

when there is no spatial correlation, i.e., R = I [24]. Scaling of the sum rate capacity has also been investi-
gated for other regions of n, M, and P (see [13, 10, 12] for details).

There are two major drawbacks of this scheme. First, it is very computationally complex, both at the
receivers and transmitter. Moreover, it requires full CSI feedback from all active users to the transmitter of the
base station (this feedback requirement increases with the number of antennas and users and with the decrease
of the coherence time of the system).

3.2 Random Beamforming

Given these drawbacks of DPC, research has focused on devising algorithms for multiuser broadcast channels
that have less computational complexity and/or less feedback and still achieve most of the sum-rate promised
by DPC such as random bemaforming [23] and zero forcing [9] (see also [14, 7]). A random beamforming
scheme was proposed in [24] where the transmitter sends multiple (in fact M) random orthonormal beams
chosen to users with the best signal to interference ratio (SINR). In this scheme the only feedback required
from each user is the SINR of the best beam and the corresponding index.

Specifically, the transmitter chooses M random orthonormal beam vectors ¢y, (of size M x 1) generated
according to an isotropic distribution. Now these beams are used to transmit the symbols s (), s2(t), . . . , saz(t)

1\We assume that the spatial correlation isinvariant across users. This assumption isrealistic because thisis effectively the transmit
correlation among antennas at the base station.



by constructing the transmitted vector

M=

SE) =3 () sm(?), t=1,...,T (6)

m=1

After T' channel uses, the transmitter independently chooses another set of orthogonal vectors {¢,,} and
constructs the signal vector (according to (6)) and so on. From now on and for simplicity, we will drop the
time index ¢. The signal Y; at the :’th receiver is given by

Y; = VPH;S+W; @)
M

= VP> Hipmsm + Wi, i=1,...,n (8)
m=1

where E(SS*) = %I since the s;’s are assumed to be identical and independently assigned to different users.
The 4’th receiver uses its knowledge of the effective channel gain H;¢,,, something that can be arranged by
training, to calculate M SINR’s, one for each transmitted beam

|Hz¢m|2

Each receiver then feeds back its maximum SINR, i.e. 1§na§MSINR'i’m’ along with the maximizing index m.

SINR; 7, = m=1,...,M. (9)

Thereafter, the transmitter assigns s, to the user with the highest corresponding SINR, i.e. nax SINR; . If
<i<n

we do the above scheduling, the throughput for large n can be written as [31] 2,
Rrpr = M Elog <1 + max SINR,L"m> +0(1) (10)
1<i<n

where the term o(1) accounts for the small probability that user  may be the strongest user for more than one
signal s,,, [24].

To further quantify (10), [24] used the fact that the SINR; ;,’s are iid over ¢ and employed extreme
value theory [34] to argue that r&aKSINRi,m behaves like M loglogn and hence concluded that the sum

rate capacity scales as in (1), meaning that the sum-rate of random beamforming behaves the same as that of
DPC for large number of users.

3.3 Other Beamfor ming Schemes

The scaling result (1) applies for iid channels. As such, we derive in Section 5 the scaling law of this
scheme for correlated channels. Alternatively, given this correlation, we consider the following beamforming
schemes.

Random beamfor ming with channe whitening In the presence of correlation, one can first whiten the
channel and then use random beamforming scheduling. In this case, and instead of using ® as the
beamforming matrix3, we would use \/aR_1/2<I> where « is a constant to make sure that the transmit
symbol has an average power of 1. The scaling of this scheme would follow directly from the scaling
of random beamforming over iid channels (see Section 5.1).

2The proof follows from the fact the when n is large the maximum SINR and the M’ th maximum SINR behave quite similarly.
3Note that ® is an orthonormal matrix composed of the beam (column) vectors ¢, . .., das.



Random beamforming with general precoding More generally, we can precode with a general matrix /aA~1/2
before beamforming, i.e. we use \/&A—1/2<I> to transmit the information symbols. The scaling of this
scheme follows directly from the scaling of random beamforming over correlated channels and so is
considered in Sections 5.2 and 5.4. We go one step further and show how to compute the sum-rate when
the beamforming matrix is premultiplied by the full rank matrix A.

Deterministic beamforming Finally, by fixing the beamforming matrix ®, we obtain deterministic beam-
forming, a scheme analyzed by Park and Park [19] (for the two antenna case) and which we further
analyze in Section 5.3.

As we mentioned above, and as we shall soon see, all these schemes have scaling similar to the iid case (1)
with a penalty term M log ¢ where ¢ < 1 is a constant that depends only on the scheduling scheme and the
correlation matrix R.

4 Effect of Transmit Correlation on the Sum-Rate of DPC

In this section, we derive the scaling laws of DPC for correlated channels. As mentioned earlier, dirty paper
coding achieves the sum-rate capacity of the multi-antenna broadcast channel. The sum-rate capacity is given
by (4) and its behavior when = is large is given by (5) for iid channels. It turns out that when the number of
users is large, the sum-rate capacity will be decreased by a constant which depends on the covariance matrix
of the channel. It should be mentioned that throughout the paper, we assume R is fixed and non-singular with
tr(R) = M.

The next theorem proves this statement. The proof is along the same line as the proof for the i.i.d. case
(as shown in [24]) with the only difference that the lower bound rather than being achieved with random
beamforming is achieved with a spacial type of deterministic beamforming. We first give the lower bound in
the following lemma.

Lemmal. Consider a Gaussian broadcast channel with a channel covariance matrix R which is non-singular
with ¢r(R) = M. Let there be one transmitter with M antennas and n users with single antennas that have
access to the CSI and the transmitter knows the CSI perfectly. We assume the transmitter uses the deterministic
beamforming matrix ® = U* where U is the unitary matrix consisting of the eigenvectors of R. Then for large
n, the sum-rate of this scheduling is

P
Rpr_p = Mloglogn + M log i + M log /det(R) + o(1). (11)

Proof: See Section 5.3 for the proof. [ |

Clearly (11) is a lower bound for the sum-rate capacity. In the next theorem we show that (11) is indeed
an upper bound for the sum-rate as well.

Theorem 1. Consider a Gaussian broadcast channel with an autocorrelation matrix R defined in Lemma 1.
Let there be one transmitter with M antennas and n users with single antennas that have access to the CSI.
Assume further that the transmitter knows the CSI perfectly. The sum-rate capacity (which is achieved by
DPC) scales like

P
Rppc = Mloglogn + M log i + M log ¥/det R+ o(1), (12)

for large n.



Proof: Lemma 1 implies that the right hand side of (12) is achievable. All we need to prove the theorem
is to show that the sum-rate of DPC can not be larger than (12). We use the sum rate capacity expression given
in (4) to obtain an upper bound for the sum-rate. To this end, define H; = HwiR%, where H,,, is N(0,1).
With this decomposition, the sum-rate capacity can be written as

Rppc = E log det | R~ o PH.. | det(R 1
pre {{Ph...,II’S?JZ}:(P,-:P} 0gde ( +i_21 w;i~ w@) e( )} ( )

M
Now using the geometric-arithmetic mean inequality det(A) < (%) , We obtain

n n

> tr(Hj,PiH,,) < maxte(H; Hy)) P

i=1 i=1
= max||Hy,|*P

to replace the log det with an upper bound
-1 * -1 *
log det (R + ; HWHHW> < Mlog (Mtr(R )+ 37 ;tr(HwiPini))

1 P
= Mlog (Mtr(Rl) + max IIHwiH?M)
]

Since ||Hy, ||? is x?(2M) distributed, with high probability, the maximum max || H,, ||? behaves like log n +
7
O(loglogmn). Thus,

tr(R™1)
M

P
Rppc < Mlog ( + o log n) + logdet R+ o(1) (14)

which is the desired upper bound. This completes the proof of the theorem. i

The bound in (14) coincides with (12) in the Theorem statement for large n. | wanted to point your
attention to thisfact. | don’t know if you want to mention anything about that.

5 Effect of Transmit Correlation on Random Beamfor ming

The deterministic beamforming scheme of Lemma 1 asymptotically achieves the DPC sum-rate. However it
has the drawback that, unless the H;’s change very rapidly over different channel uses, it will often transmit
to a fixed set of users. To make the scheduling more short-term fair, it is useful to further randomize the user
selection by random beamforming (see [23, 24] for more details). In this section, we analyze the effect of
correlation on the sum-rate of random beamforming. We start by the simplest case in which the beamforming
matrix is multiplied by R~'/2 in order to whiten the channel. We then turn our attention to the random beam-
forming scheme and finally use it to deduce the sum rates of deterministic beamforming and beamforming
with general precoding.

5.1 Random Beamfor ming with Channel Whitening

To whiten the channel, we multiply all the beams with \/&Rfl/2 where « is a normalization factor. The
transmit symbol is therefore equal to

M
St) =Y VaR P¢n(t)sml(t) (15)
m=1

6



We choose « to satisfy the power constraint— that the transmit symbol average power is bounded by unity,
E{aS*R'S} = aE{tr(SR'S*)}

aE{tr(R7'5*9)}

= atr(R'E(S*S))}

tr(R™1)
= a————>* 16
a— (16)
Thus, the constraint E{aS*R‘ls} < 1 implies that o < %. We can therefore write the SINR as
H.R~124. |2 HY b, |2
SINR; , = Hlt™ | = A fm| m=1,...,M (17)

Pa + Yk [ HIR Y22 JE 430 [HY ¢el?

where H} = H;R~'/? has covariance of I and therefore has i.i.d. Gaussian entries with zero mean and unit
variance. Therefore we can apply the random beamforming result of [24] to obtain the sum rate of random
beamforming with channel whitening. This is summarized in the following Theorem.

Theorem 2. Consider a Gaussian broadcast channel with a channel covariance matrix R defined in Lemma
1. Let there be one transmitter with A antennas and n users with single antennas that have access to the CSI.
If the transmitter knows the channel autocorrelation perfectly, then the sum rate capacity for random beam
forming with channel whitening (denoted by Rgr_w) is given by

P
Rpp_w = Mloglogn + M log 7 Mlog + o(1) (18)

for sufficiently large n.

When the the channel is i.i.d, Theorem 2 reduces to the already known result of [24]. It is also worth
mentioning that (18) is less than the sum-rate achieved by DPC in (12).

5.2 Sum-Rate of Random Beamforming

In this section, we study the effect of transmit correlation on random beam-forming. To do this, we need to
derive the CDF and pdf of the SINR defined in (9).

The sum rate capacity of random beamforming is given by (10). Now consider the expectation in (10).
The averaging here is done over H; and @ in the following order,

Elog (1 + llgiangINRi,m) = Fs {EHM‘I’ log (1 + 112?5XnSINRi’m> |<I>} 19

i.e., we evaluate the expectation by first conditioning on ® and calculating the expectation over H; and we
subsequently average over ®. The advantage of doing so is that ® is common among all users and so, by
conditioning over @, all the SINR’s, SINR j,, ..., SINR,, ,, remain iid. This in turn allows us to evaluate

[max SINR; ,,, using extreme value theory provided we can evaluate the CDF (and pdf) of the SINR.
<i<n

It turns out that the main challenge lies in calculating the CDF. When the channel is iid, calculating the
CDF is straightforward as the SINR numerator and denominator are independent [24]. This ceases to be the
case in the presence of correlation and in evaluating the CDF, we use a contour integral representation of the
unit step and find the CDF using the Gaussian integral. Once the CDF is available, we appeal to results in
extreme value theory to obtain the behavior of max SINR; ,, when n is large and proceed to calculate the

1<i<n
expectation in (19)
With the scaling law for random beamforming at hand, it becomes straightforward to obtain the scaling
laws of random beamforming with precoding and of deterministic beamforming.



5.2.1 Distribution of SINR; ; Given
We first obtain the complementary CDF of SINR,; ,,, defined in (9) by defining the auxiliary variable S as
xZ

§ ==+ H((1+2)$mdyn — 2D, (20)

Here p = % just to simplify the notation and where the beamforming matrix @ is given and H; isan M x 1
vector with Gaussian entries and with covariance matrix R. We can write the probability that SINR; ,,, > =
as,

P(SINR;,, > z) = P(S > 0) — /  P(H)u(S)dH, 21)
_ 1 * —HIRUH;, .
- e /_ K (S)dH, 22)

where »(.S) is the unit-step function. To evaluate P(S > 0), we can view S as a weighted sum of correlated
Gaussian random variables and employ one of various techniques that have been suggested in the literature.
Unfortunately, the expressions we get involve recursions and infinite sums and hence don’t lend themselves
to further mathematical manipulations. Instead, we use the following representation of the unit step function

g 1 S e(jw+13)5d 23
u )_E/_oo jutp ™ #)

which is valid for any 8 > 0. This frees (22) from the constraint on S and, as we shall see, allows us to
compute (22) in closed form.
Using (23), we can express (22) as

1 00 1 1) ) R
(5>0) = 5 i qenm) /_oodij+ﬁ/_ood i

Using the definition of S in (20), we get

PE>0) = L [Tt % e,
(8>0) = 27M+1 dot (R) /oo Yo+ B /oo i
1 oo *(]UJ—F,B)% 1
= W/ dw- ’ - (24)
2rM+1det(R) J_o Jw+ B det(R)
where
R=R"+z(jw+B) - (1+z)(jw + B)pmd}, (25)

Evaluating the roots of R Now to evaluate the integral with respect to w, we need to find the roots of

det(R) with respect to w. To this end, note that

det(R) = det(U*AT'U + (jw + B)(zI — (1 + z)pmd})) (26)
= det(A™" + (jw + B) (=] — (1 + 2)$ynfrm)) 27)
= det(A™1) det(—A) det((jw + B)I — A7Y) (28)

where U* A~1U represents the eigenvalue decomposition of R=1, 4,,, 2 U, and

A= (1+2z)AV%¢, ¢ A2 — zA (29)
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Now

det(A™Y) det(—A) = det(z] — (1+2)d,,b,,) (30)
= Mz - (1+2)) (31)
= —gM! (32)

because = — (1+ x)@m@‘n has z as an eigenvalue with multiplicity M — 1 and an eigenvalue at z — (1 +
z)||é,mlI? = —1. We can thus write

det(R) = —zM tdet((jw + B)I — A )
Now consider the equation
det((jw+B) I — A" =0 (33)

The roots of this equation, with respect to jw + 3, are 1/X;(A) where \;(A) is an eigenvalue of the matrix
A. Since A is Hermitian and nonsingular, these eigenvalues are real and nonzero. To find these eigenvalues,
decompose A as

A=A+ A,

where
A; = (1+2)AY%4,,6,,AY? and Ay = —zA

The matrix A; has only one nonzero eigenvalue, (1 + x)$;A$m. The eigenvalues of A, are
—zApm(A) < —zAp—1(A) < -+ < —zA(A)

where A\;(A) < Xp(A) < --- < Apy(A) are the diagonal elements of A (ordered) 4. The second largest
eigenvalue of A thus satisfies [18]

Anvi—1(A1) + An(A42)
Au-i(4) < { A (A1) + An-1(A2) 39
_ 0— {17/\1
= { Bk —on )

This means that Aps—1(A4) < —zA; < 0. So the second largest eigenvalue is negative. The largest eigenvalue,
however, is positive (otherwise A would be negative definite or singular, neither of which is the case). This
means that (33) has exactly one positive root

Henceforth, we drop the dependence upon the matrix A as it is understood. From above, we can express R as

det(R) = —zM~((jw + B) — 32) [T ((Gw + B) — L)

“In general, the M eigenvalues of asize M matrix K are written as A\ (K) < A2(K) < --- < Am(K). We will drop the
dependence on K for notational convenience whenever it is understood.



Deriving the CDF of SINR  With the above factorization of det(R), we can proceed to evaluate the proba-
bility P(A > 0) in (24) and hence the CDF of the SINR can be written as,

1 1 e*(jw-kﬂ)%

= 2r e det(R) / (jw + A) (G + B) = ;) TLiZ (Gw + B) = )

P(S>0)=— dw  (36)

Using partial fraction expansion, we can write

M-1
1 «a a; o'
. . 1 M—-1,- 1 = - M 1 + Z . - 1 + . 0
(jw+B)jw+B— ) [lizy Gw+B—7%) Jw+b—5; Hiwtf-x Jwth
The term T is the only one that contributes to the integral in (36) (the other terms integrate to zero
A
since the poles are outside the contour of integration), and so we only need to calculate a s
1
oy — (37)
oo+ A TEEL o 6= 30 | s s
1
= (38)
M—1
o izt Gy — %)
and
1 1 ane _(J'w-l-ﬂ)&
P(§S>0) = d 39
620 = g | G )
1 apnr 71L
= z 40
27M det(R) zM—1 e (40)
This represents the probability P(SINR; ,, > ). Thus, the CDF of the SINR is given by
1 Qpnr _lL
F(z)=1- px
(z) 27M det(R) 1% "
Or, upon replacing as by its value obtained in (38),
_1 z
F(z) =1 = sorbamm i [T 5328se # 7w (41)

We would like to emphasize that the eigenvalues of A, A;, are functions of x.

5.2.2 Probability Density Function of SINR
To find the pdf of the SINR, we simply evaluate the derivative dF(“) . To do this, we first need to find the

derivative of the elgenvalues 4 50 |et g; be the eigenvector assomated with X;. Then, we can write

o= llal?
= GNP (Gt — Y BN g,

k#m
where we used the notation ||¢;||% = g;Ag;. We can use this to show that

dX;

d—; = llaill% (42)
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where B = AY2(, ¢, — I)AY/2. We can in turn use this result to show that

d AiAn _ Mllalls = A3 llamllz (43)
dz \ z(\i — A\pr) z2(Ni — Am)?

where C' = AY/2g_ ¢ A1/2. ;From (41)-(43), we can show that the SINR pdf is given by

1 M—1 )\ 1 llanll2 2 M 1 A llallE =M llaalI2
f(@) = sorgamm e R |t O AfM){E e~ lamlls = 2050 5 2 ey oy 44

5.2.3 Scaling Law of the Maximum SINR

Lemma 2. Let F(z) denote the CDF of SINR,; ,,, given by (41) and let f(z) denote the associated pdf (given
by (44)). Then

. 1—F(z) P
lim ==
voo f(z) l[mllx-1
Proof: From (41) and (44), we can write
1—F(x) A
- ‘ (45)
¢ M—1 1 Nyllalln -2
f(z) %% _ HqM”B e )}1 3rllgs |(|/\c /\JJJ;IMHC

To evaluate the limit of this expression, we need to investigate the behavior of the eigenvalues and eigenvectors
of A as z — oo. Now from the bound (35), we deduce that

lim \; = —oco forall 2 #m

T—00
We now have to evaluate the behavior of the maximum of eigenvalue as z tends to infinity. This is done
by using the Rayleigh quotient for the maximum eigenvalue as,

Av = max u*Au = max u*(A'/?¢,, ¢, A7 —zAV? N " g u (46)

1 1
[|ull2= [[ul|l2= mti

The vector u that maximizes Ay is the associated eigenvector. Since any vector « of dimension M can be
written as u = Y- oy A=1/2¢;, we can write || Au|; as

|Auls = u* Au = v* | amAY?$ —xZa,Al/QQSZ =a? —mZa 47)
i£m i#m

where we used the fact that the ¢,’s are orthonormal vectors. Now as z tends to infinity, || Au|p could go
to —oo and is maximized when Z#m o? is equal to zero (i.e., a; = 0 for i # m and as a result o, =

W) We have thus proved that

A-1/2G
lim ¢py = lim u = Om

1
lim Ay = —
=00 [ e

(48)

and

11



Using the above, it is easy to verify that

1 Aylaill?
lim — ZMU#lc  _ g
2500 X\ 2(Ni — Anr)

and ) ) )
o1 Ml Al
z—oo N x(Ni— Am) w20 z(N— Aar)

¢From (48) and the defining expression of B, we also deduce that

=0

2
Thus, the only nonzero limit in the denominator of (45) is %% and

1-F 2
lim (=) =71 att 2~ 1% p2 (49)
2 TF@  Lauld  omlio

Note that in the absence of spatial correlation, A = I, and the above limit reduces to

. 1—-F(x) p
1 = —
w0 @) [l

=p

which is the scaling obtained in [24].

Using extreme value theory, and the lemma above, we know that 112a<x SINR; ,, behaves like log n.
AN

|I¢m||
Upon substituting this in (19) and noting that the ¢’s are identically distributed, we can write

M
P
R = Ey, logc|1+ ————logn + o(loglo + o(1
RBF > Bsn g( MaE gn + o(log gn)) o(1)

m=1
P
= Ey,, log logn | +o(1)
Z <M||¢m|| )
P 1
= Mloglogn + Mlog — + MEy, log | ——— | +o(1). (50)
M [ e

It thus remains to calculate the expectation in (50) for which we need to derive the CDF of W

5.24 Calculating the CDF of H¢|I

Lemma 3. The CDF of y = is given by

||¢>Hi,1

G(z) = Pr(||¢H <z)=1-3m (%_,\,-%A )M_lu(l_ﬁ)

where n; =

i Gm—xm)

12



Proof: Consider the inequality
1
Yy=m—5— >
Ipl3-

which can be equivalently written as 1 — z[|$||3_, > 0. As we did to derive the SINR CDF above, we use the
unit-step representation

, Ll )G +)
1- ) =5 : d
u(1 = allgles) = 5 [ —dwn
Now the pdf of ¢ is
I'(M
() = "D s(1g)12 - 1

Alternatively, following the approach of [5], we can use an integral representation for the Dirac delta
p(g) = LM 1 / diopeie (1412=1)

™ 2x

> z) = p(1 — z||¢||3-: > 0) is given by

So the probability p(W
A1

] w1+ (1=2l|8]I3_1) yjwa(||g]|2 1)
>zx) = dw /dw /d
s > = s | dor [ o [ a5 o+

= 4F(M+2/ e(JUJlJrﬁl /dw2€ ]wz/d¢e z(jwi+1)A _ij[)d,
™

(M) / e(9w1+/51 / 1
= —— L [ du—— | dwge 2 .
4 M+2 w1 Jjwi + B wae det (z(jwi + B1)A~1 — jweI)
Now use partial fraction expansion to show that
1 _ 1 (51)
det (#(jwr + B1)ATT = juwn) Hle ( )(]wl +B1) — Jw2)
1 M
= 52
gM-1 (yw1+[31 )M 1;)\1 jw1+ﬂ1)—]w2 (52)
where n; = L We thus have
Lxsm—5m)
1 I‘(M) 1 / eJwi+p1 / i .
———>x) = dwq dw Jw2 (53
PR > = a2 o1 | G g Z : TN
]w1+/31 bV (A))
= dw 54
27T iEM 12771/ “ (jwi + )M (4)
or after some straight-forward calculations,
M—1 .
Sl b ] Cabre) M G v)
||<15||A ) Z ' i(A Xi(A)
Alternatively, the CDF, G(z) = p(WAQ—_l < z) Is given by
1 1 \M! ( x )
;”Z (w MA)) ()
which complete the proof of the Lemma. [ |

13



5.25 Calculating the sum-rate

Now all we need to do to calculate the sum-rate in (50) is to compute E log( where the distribution of

=)

llgl13—1

W is given in Lemma 3. We employ integration by parts and use the CDF to calculate the expectation as
A1

follows

1 A (A) 1
B (logli=s) ) = G)log) - [ 6l dy
o2 N

(A) Y
An(A)
= GOw(A) g (A)) - / Gly)~dy
A1(A) )
An(A) 1 M Ai(A) 1 1 1
= dogCurA) - [ LYo [ G- M
)\1(A) ) i=1 )\1(A) Yy 2 Yy
R 1
= log(A1(A)) -I-Zm/ iy M=1Zg

] 1 -1
= log(\(A) + 3 milog(2Y) / (Shym-1-kg,
zz—; 1 ; ) YR
M M-1 A(A)
Ai 1 -1 1
= log(A1(A)) + nilog(—z) _(_)Mflfk

Therefore the sum-rate of beamforming can be written as,

P
Rrpr = Mloglogn —I—MlogM +log A1 (A) +

M-1

.- Ai 1 =1, 1 1
;ﬂi log ()\_1> 2 m(/\—i)M 1 k{()\i(A))Hg - (Al(A))k+2}+0(1)' (55)

5.3 Sum-Rate of Deter ministic Beamforming

Here we consider the case where the beamforming matrix ® is fixed over all channel uses. In this case, we
can use the same analysis as we done in the case of random beamforming with the only exception that we
do not need to take expectation over the beamforming matrix. Therefore, we may write the sum-rate for the
deterministic beamforming matrix ® as,

M
P
Rpr_p :Mloglogn—leogM—FZlog( (56)
i=1

1
—_—— 1
) oW
where U*A~1U is the eigenvalue decomposition of the correlation matrix R~
One interesting spacial case would be the case where the U ¢;’s are the columns of the identity matrix. In

this case, the beamforming matrix is in fact equal to U* and the argument in the logarithm would therefore
reduce to A,,,. Thus, when n is large, the sum-rate is given by

P
Rpr-p :Mloglogn—I—MlogM—}—Mlog Vdet R+ o(1). (57)

14



Keeping in mind that the eigenvalues of A are such that Zf‘il Ai(A) = M, itis clear that the geometric mean
of \;’s would be less than 1. Eq. (57) in fact proves Lemma 1. It should be also mentioned that this result is
obtained in [19] for M = 2.

54 Sum-Rate of Random Beamforming with Precoding

We can consider a generalization of the random beamforming by using precoding. In this scheme the new
beamforming matrix is \/aA~1/2® where A is a positive definite matrix and « is just a normalization factor
to adjust the transmit power. Again similar to Section 5.2, we can state that « has to be less than A Ty

In order to analyze the sum-rate, we can follow along the same line as what we did for the analy3|s of
the random beamforming with the only exception that the covariance matrix of the channel is replaced with
R = A~*/2RA~1/2, Therefore the same result holds for this case with the new covariance matrix R. Here is
the main result.

Corollary 1. Considering the random beamforming scheduling with beamforming matrix /aA~1/2® where
® is a random unitary matrix, the sum-rate of this scheme can be written as

M
P tr(A=1) P
RBFprec:Mloglogn—l—MlogﬁqL;ZlElog (1+ 7 qb;f‘U*A_quSi) +o(1). (58)

for large n, where U*A~1U represents the eigenvalue decomposition of R ~1.

6 Simulation Results

In this section we present the simulation results for the sum-rate of beamforming schemes and DPC. In the
first example, we consider a system with two transmit antennas, i.e., M = 2, and 100 users. The covariance
matrix is assumed to be like

Fo {1 a] (59)

a 1

where « is the correlation. Fig. 1 shows the sum-rate loss (compared to the case of no correlation) for DPC,
RBF and RBF with whitening. It is clear that RBF outperforms the one with channel whitening. Fig. 2 also
shows the sum-rate for a systems with three transmit antennas, i.e., M = 3, with covariance matrix,

1 o?
F=|« o (60)
1

a2

R m Q

where « is changing from 0 to 0.8. In Fig. 3, we show the sum-rate versus the number of users in system with
M =2, a = 0.5, P = 10 for beamforming scheme and it is compared to the case of having no correlation.

In Fig. 4, we show the sum-rate versus the number of users in system with M = 2, o = 5, P = 10 for
beamforming scheme and it is compared to the case of having no correlation.

7 Conclusion

This paper considers the effect of spatial correlation on various multiuser scheduling schemes for MIMO
broadcast channels. Specifically, we considered dirty paper coding and various (random, deterministic, and
channel whitening) beamforming schemes. When the channel is i.i.d. and for large number of users, the sum
rate of all these techniques exhibits the same scaling, namely, as M loglogn + M log % + o(1) where n is
the number of users, M is the number of transmit antennas and P is the average SNR.
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Figure 1: Sum-rate loss versus the correlation factor o for a system with M = 2 and n. = 100.
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Figure 2: Sum-rate versus the correlation factor « for a system with M = 2, P = 10, and n. = 100.
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Figure 3: Sum-rate loss versus the correlation factor « for a system with M = 3 and n = 100.
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Figure 4: Sum-rate versus the number of users in a system with M =2 and a = 0.5

In the presence of a correlation between transmit antennas, the channel matrix has a covariance ma-
trix R which is assumed to be non-singular and ¢r(R) = M. In this case, the sum-rate of DPC and
beamforming schemes will be different. It turns out that in these case, the sum-rate can be written as
M loglogn + M log % + Mlogec + o(1) where ¢ < 1 is a constant that only depends on the scheduling
scheme and the covariance matrix R. For DPC, c is just the geometric mean of the eigenvalues of R. We
further obtain ¢ for different beamforming schemes; For example, for the case of beamforming with channel
whitening, ¢ will be equal to the harmonic mean of the eigenvalues of R. It is worth mentioning, numeri-
cal results suggest that sum-rate of random beamforming outperforms that of the random beamforming with
channel whitening.
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