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ABSTRACT

This work proposes an expectation-maximization approach to
channel identification and equalization in OFDM. The algorithm
exploits the natural constraints imposed by the channel (sparsity,
maximum delay spread, and a priori statistical information) and
those imposed by the transmitter (pilots, cyclic prefix, and the
finite alphabet constraint). These constraints are used to reduce
the number of pilots needed for channel and data recovery and
also to perform this task within one packet.

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is an
effective technique for high bit rate transmission. It has
found widespread applications and is already part of many
standards including digital audio and video broadcasting
in Europe and high speed transmission over digital sub-
scriber line (DSL) in the United States. It has been proposed
recently for local area mobile wireless standards including
IEEE 802.11a and HIPERLAN/2. [1]

For proper operation, the OFDM receiver needs accu-
rate channel state information. The receiver can go around
this by employing differential modulation at the cost of a 3
to 4 dB degradation in SNR. Otherwise, the receiver needs
to jointly recover the input and channel information. For
rapidly time varying channels, the receiver faces the addi-
tional challenge of performing the recovery within the same
packet. Many techniques have been proposed in literature to
achieve this (see, e.g., [1] and the references therein). Thus,
pilots were employed in [2] and [3] to perform channel esti-
mation. The redundancy due to the presence of the cyclic
prefix (CP) was utilized in [4] and [5] to perform blind chan-
nel identification and in [6] for channel tracking. The a priori
information of time and frequency correlation was used in [7]
and [8] to estimate the channel’s frequency response. At a
higher level of abstraction, each of these methods utilizes one
or more constraints on the input or channel to perform chan-
nel and/or data recovery. None of them, however, makes a
collective use of the channel and data constraints so to as
to improve the quality of the channel estimate and/or to
reduce the overhead necessary to achieve this task.
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In this paper, we propose an expectation-maximization
(EM) approach for semi-blind channel identification and equal-
ization. Specifically, we exploit the natural channel con-
straints and those imposed by the transmitter to perform
channel and data recovery within the same packet and to re-
duce the number of pilots that are eventually needed. These
constraints include

e Maximum delay spread and sparsity constraints on
the channel, which mean that there are only a few
active taps with known location

e A priori channel statistics like the channel mean and
covariance

e Redundancy of the input in the form of cyclic pre-
fix (redundancy due to the presence of a real code is
considered in [9])

e The finite alphabet constraint on the data

e The artificial constraint of pilots whose number we are
able to reduce by building upon the aforementioned
more natural constraints

As we shall soon see, the algorithm can make use of
these constraints collectively and the channel identification
step always boils down to a (regularized) least-squares LS
problem. While we don’t pursue that here, this least-squares
formulation can be easily generalized to incorporate time
correlation information.

1.1. Notation

We denote scalars with small-case letters (e.g. ) , vectors
with small-case boldface letters (e.g. @), and matrices with
uppercase boldface letters (e.g. X). Caligraphic notation
(e.g. X) is reserved for vectors in the frequency domain.
The dependence on time is indicated by a time index ¢ that
appears as a subscript (e.g. x;, @, X;, X;).

Now consider a length-N vector x;. We deal with three
derivatives associated with this vector. The first two are
obtained by partitioning «; into an upper (prefix) vector x;
and a lower (usually longer) vector &;. The third derivative,
x;, is created by concatenating a; with a copy of its prefix
x,. The relation among x; and its derivatives is summarized



by

i

|
Z;

This notational convention will be extended to matrices as
well. Thus, a matrix @ with N rows can be partitioned as

]-[ar]-[4]

e} Qu_r
The subscripts stand for the number of rows in the subma-
trix (when these rows are understood) or for the index set of
the rows of the mother matrix that belong to the submatrix.

(2)

o-|

2. ESSENTIAL ELEMENTS OF OFDM

Consider an OFDM transmission system. The length-N data
packet X'; undergoes an IDFT operation to produce the time-
domain packet x; (x; = QX;). A cyclic prefix x, of length
P is appended to x; resulting in the larger packet

_ 73
e { Z; } )
When passed through a channel h of (maximum) length

P+1, x; produces the length N 4 P packet g, at the output.
Just as in (3), we split the output packet gy, as

— | Y
yi_[gi]

We can show that the output prefix y, absorbs all ISI that
takes place between x;—1 and x; and that y, is totally de-
pendent on «;. The total OFDM channel can thus be decom-
posed into two constituent channels.

(4)

2.1. Circular Channel

We can show that y, is related to h 2 [ BT 0%_p_ 1 "
and «; through circular convolution

®

where m; is the output noise which we take to be white
Gaussian with variance o2. In the frequency domain, (5)
reduces to an element-by-element operation

’inHQXi'FNz‘ (6)

where Y;, H, X;, and N; are the DFT’s of y,, h, =;, and
n;, respectively. It will be useful to rewrite (6) in terms of
the time-domain channel h. To do this, we simply replace
‘H by the partial FFT relationship

H=Q, h
where, as per our notation, QPH consists of the first P+ 1
rows of Q. We can thus write
V. =diag(X,)Q%,, h+N; (7)

Xpr1—

Estimaing the channel from (7) instead of (6) makes use
of the finite delay spread property, reducing the number of
parameters to be estimated from N to P + 1.
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2.2. Linear Channel

Similarly, the input cyclic prefix sequence is related to the
output prefix sequence through convolution with the channel
[6]

y(i) = h(i) * z(i) + n(i)

‘We can write this in matrix form as

(8)

where X, is a P x (P + 1) Toeplitz matrix created from the
cyclic prefixes ;, ; and z;.

2.3. Total Channel

Naturally, the sequences @; and y, are related by linear con-
volution with the channel, i.e.

90) = hx (i)

=

+ (i)

Alternatively, with h AT 0%_; 17, we can write

[56) = h0) *2(0) +76) | (9)

By combining (7) and (8), we can put the total convolution
in the following more useful (matrix) form

’jizfih-i-ﬁi (10)
where, in line with the notational convention (3),
— a [ diag(X:)@Q; > Vi N
X'i = — P+l ) i = ) T =
[ X, Y Y, N n;

2.4. Channel and Data Recovery

The input/output relationships (6) and (10) are all that is
needed to perform channel and data recovery. Specifically,
equation (6) can be used for optimal (MMSE) data recovery.
Assuming that X;(l) takes on its values from the alphabet

A={A1,As,..., A4} with equal probability, we can show
that the MMSE estimate is given by *
_ Vi) —mW A2
St A

AME() = B )|V = (11)

[V ()=HD)A |2
ZIA\ - -
j=1¢ "

Similarly, we can calculate the second-order moment of the
data as

il V=m0 A |2
JI= A-|2e 6721,
X 2 _ Z]:l | J
E[1X:()]* 1Y) = AT (12)

ZIA\ e o2
j=1 )
IThis should outperform the linear estimate

. VEXH*(L
AMMSE ) VEHED g,
Ex|IHOI? + o3
that is usually employed in literature and which is not globally
optimum in the finite alphabet case.




Equation (10) can be used for the dual job of channel estima-
tion. Thus, given an estimate of the ¢th packet X'; and the
cyclic prefix of the previous packet x, ;, we can construct
the matrix X; and perform channel estimation by solving
(10) in the LS sense
min [[g, — X (13)
By iterating between (11) and (13), we can perform joint
channel and data recovery from the output data (see [10]).
The iterative procedure is best articulated as an expectation-
maximization (EM) iterative algorithm. The algorithm is
kick-started from an initial channel estimate obtained from
a set of pilots, as described below.

2.5. Pilots for Initial Channel Estimation

With a maximum of P + 1 active channel taps, we need an
equal number of pilots to identify the channel uniquely. We
can, however, capitalize on other natural constraints and
reduce the number of pilots necessary to initialize the es-
timation process. Clearly, only the cyclic (diagonal) chan-
nel can make use of the pilot information. Now let I, =
{i1,42,... ,ir,} denote the index set of the pilot bins. Start-
ing from (7), the pilots induce the following subsystem of
equations

Yii, = diag (Xi1,) Qb+ N, (14)

Xpi1—
The subscript I, e.g. in inp, acts as an the indicator set of
the rows in the vector or matrix. As we would like to reduce
the number of pilots as much as possible, (14) is usually
underdetermined (L, < P+ 1) and hence must be solved in
the regularized LS sense

. 2 ; * 2
min o[k + Vi, - diag (Xir,) @}, hlliv

(15)
3. THE EM ALGORITHM FOR JOINT
CHANNEL AND DATA RECOVERY

3.1. The EM Algorithm

Ideally, we identify h by maximizing the log-likelihood func-
tion

ML 5
h = arg max Inp (h|X:,Y;)

Since the input X'; is unobserved, we maximize instead an

averaged form of the likelihood function using the expectation-

maximization (EM) algorithm. To this end, we split the
available variables into three classes

e The parameters to be identified which in our case con-
sist of the channel impulse response h

e The observed data Y; =
the output of both channels

e The unobserved or hidden data X;

T
[ yT giT } consisting of
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The EM algorithm attempts to identify h by solving the
following problem iteratively

~(3+1)

h = argmax EX@W%E“) [lnp(mxi,?i)] (16)

Thus, each iteration involves expectation and maximization
steps. As we will now show, this boils down to minimizing a
regularized quadratic expression in h. To this end, consider
the input/output equation (10) of the total channel and note
that

hlp(m-"’uyi) lnp(xnyim)
Inp(X;|h) + Inp(Y;|Xi, h)

= Inp(X;) +Inp(Y| X, h)

where we assumed that the channel response is determinis-
tic and hence independent of the input. Since the noise is
Gaussian, we can further write

np(VilX:, b) = ~(N + P)n(o?) - — ||V - Xoh* (17)

Thus, the iterative relation (16) for the EM algorithm be-
comes

E(j+1)

= arg max _Exi\?iﬁ(j) ||?z - YiQHQ (18)

It now remains to evaluate the expectation in (18).

3.2. The Expectation Step

In the absence of the expectation operator, the objective
function (18) becomes quadratic in h and is subsequently
easy to optimize. The effect of the expectation operator is
to replace X; in (18) by its expectation and to add a reg-
ularizing term, thus transforming the LS into a regularized
form

P (3+1)

B — argmax — { [P + B[] A" + |1BlZ, 5} (19)

where Cov(X;) is the covariance matrix of X;

Cov(X;) = B [X/X:| - B [X}] B [X]] (20)
The first and second moments of X; in (19) can be calcu-
lated from the mean and second moment of the data packet
X;, which are already evaluated in (11) and (12), respec-
tively.

3.3. The Maximization Step

The maximization step is now straightforward to carry out.
Specifically, we have

A = (cofXi+ B[ E[X]) E[X)

- ([xx]) BXIY (21)

If the noise variance is not known, the EM algorithm can

also be used to estimate it. We can show that the noise
estimate is related to the (EM-based) channel estimate by

J+1) |2 - (j+1) (|2

h

G2ty _ 1
" N+P

(|9~ £ x5

Cov[X]]

)



4. UTILIZING A PRIORI STATISTICAL
INFORMATION

At the receiver, we usually have additional statistical infor-
mation about the channel. This information can be used to
enhance channel estimation. Specifically, wireless channels
are usually Gaussian distributed with certain mean (zero
or non-zero mean depending on whether fading is Rayleigh
or Rician) and certain covariance (also known as the power
delay profile).

Thus, assuming that the channel follows a normal dis-
tribution N'(m, II), its pdf takes the form

1 ~lth-m2_,

= — -
P = (amyr 7

(22)

which corresponds to the log-likelihood function (discarding
a constant term)

np(h) = —|[h - ml| (23)
With this additional information, the EM-based channel es-
timate (16) takes the form

7 (3+1)

h argmax E 0 Inp(Xi, Yilh) + Inp(h)

EARD
argmaxﬁ{—(%2 ||jl — E[YZ]Q”Q

1 2 " 2
B A AT A

Alternatively, we can write the objective function as a single
Euclidean norm

hUTY = argmax —||b— AR/ (24)
where
=Y. b
b=| I /2m | and A= I (25)
- ,71/2
o U%LCOV [XZ]

It is easy to show that the corresponding channel estimate
is given by

ﬁ(jJrl)

=1

- (U%E [x:x] +n-1)_1 (26)

(ULE m*?ﬁn*lm)

Remarks

e The semi-blind algorithm described above uses the
constraints imposed by the finite alphabet nature of
the input and pilots. It also makes use of the re-
dundancy exhibited by the cyclic prefix. We can also
utilize redundancy due the presence of a real code,
something that is relegated to [9].

e We also utilized the finite delay spread nature of the
channel and the a priori statistical information. It is
straight forward to extend the above developments to
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the case where the channel has a sparse nature when
the active taps locations are known a priori. Utilizing
these constraints always boils down to solving a (reg-
ularized) LS problem as reflected by (15), (21), and
(26).

e We have assumed that the channel remains constant
over one OFDM packet. When channel variation from
one packet to the next follows a state-space structure,
we can use the previous channel estimate together
with the Kalman filter to initialize channel recovery
for the new OFDM packet, thereby reducing the num-
ber of pilots that are eventually needed.

5. SIMULATIONS

We consider an OFDM transmission system with packet length
N = 128 and cyclic prefix length P = 15. The channel is as-
sumed to have 16 active complex taps. The input is taken to
be 4-QAM transmitted at an SNR = 15 dB. Channel identi-
fication is performed within the same packet using a number
of pilots and the mean-square error of the channel estimate
is plotted vs the number of iterations. We demonstrate the
performance of the EM algorithm under various constraints.
Fig. 1 shows the learning curves for the algorithm using 8,13,
and 16 pilots without using any statistical information. As
expected, the accuracy of channel estimation improves as the
number of pilots increases. We also note that convergence
is achieved within 6 iterations.

We next demonstrate the improvement in the perfor-
mance of the EM algorithm when the additional statistical
information (frequency correlation) is available. We perform
the same set of simulations for a channel with an exponen-
tially decaying power profile and run the EM algorithm both
when this information is available to the receiver and when
it is not. We note (see Fig. 2) that channel estimation with
5 pilots and a priori statistical knowledge outperforms esti-
mation with 14 pilots and no statistical information. When
only 4 pilots are available (in addition to a priori statisti-
cal information), the algorithm attains the same accuracy as
that for the 14 pilot case at the cost of increased number of
iterations. Finally, Fig. 3 depicts the gain that the EM iter-
ations provide vs SNR. Thus, the upper curve in this figure
represents the channel estimation error using 4 pilots in ad-
dition to frequency correlation information without invoking
the EM iterations. The bottom curve is the final estimation
error after the EM iterations are completed.

6. CONCLUSION

In this paper, we considered the problem of semi-blind chan-
nel and data recovery in OFDM. Specifically, we designed an
EM receiver that makes use of the data and channel con-
straints to perform this recovery with zero latency and with
small pilot overhead. The receiver uses the pilots to kick
start channel estimation and subsequently iterates between
that and data recovery. The receiver utilizes the data con-
straints (which include the cyclic prefix as well as the finite
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Figure 1: Reduction in MSE due to pilot overhead— EM
learning curves for different number of pilots
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Figure 2: Reduction in MSE due to a priori statistical
information— EM learning curves in the presence and ab-
sence of a priori statistical information

alphabet nature of the data) and employs the data estimates
in soft format. The receiver also makes use of the various
constraints on the channel (which includes sparsity, finite de-
lay spread information, and frequency correlation). Thanks
to the presence of the cyclic prefix, optimal data recovery is
always done on element by element basis. Channel recov-
ery always boils down to solving a regularized least-squares
problem.
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