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Abstract—In an OFDM system, the receiver requires an estimaghannel estimation in OFDM systems. They can be broadly
of the channel to recover the transmitted data. Most channel esgiivided into three categories:

mation methods rely on some form of training which reduces the
useful data rate. Here instead we blindly estimate the channel by
maximizing the log likelihood of the channel given the output data.
Finding the likelihood function of a linear system can be very difficult.
However, in the OFDM case, central limit arguments can be used to
argue that the time-domain input is Gaussian. This together with the
Gaussian assumption on the noise makes the output data Gaussiark)
The output likelihood function can then be maximized to obtain the
maximum likelihood (ML) estimate of the channel. Unfortunately,
the likelihood function is not uni-modal and thus finding the global
maxima is challenging. In this paper, we propose two methods to find
the global maxima of the ML objective function. One is the blind
Genetic algorithm and the other is the semi-blind Steepest descent
method. The performance of the proposed algorithms is demonstrated
by computer simulations.

Keywords— Gaussian assumption on data, Blind channel estima-
tion, Semi-blind channel estimation, Maximum likelihood estimation. 3)
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I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) has
emerged as a modulation scheme that can achieve high data
rates by efficiently combating multipath effects. It does this by
dividing the frequency selective fading channel into parallel
frequency-flat channels. The additional advantages of simple
receiver implementation and high spectral efficiency due to

Training-based estimationlt involves sending pilots
(symbols which are known to the receiver) with the data
symbols so that the channel can be estimated and hence
the data at the receiver (see for example [3] - [5]). Use
of pilots results in decrease in bandwidth efficiency.
Blind estimation The limitations in training based esti-
mation techniques motivated interest in the spectrally
efficient blind approach. These techniques use some
inherent structure of the communication system which
is produced by constraints including finite alphabet
constraint [6], [10], cyclic prefix [8], [9], [10], and time
and frequency correlation [7], [11]. Blind techniques are
generally computationally cumbersome.

Semi-blind estimatianSemi-blind techniques make use
of both pilots and the natural constraints to efficiently
estimate the channel. These methods use pilots to obtain
an initial channel estimate and improve the estimate by
using a variety of a priori information. Thus, in addition
to the pilots, semi-blind methods use the cyclic prefix
[71, [9], [10], time and frequency correlation [7], [11],
gaussian assumption on transmitted data [12], and virtual
carriers [13] for channel estimation and subsequent data
detection.

orthogonality contribute towards the increasing interest in In this paper, we perform channel estimation by utilizing
OFDM. This is reflected by the many standards that consideré§ Gaussian assumption on the transmitted data and the
and adopted OFDM, including those for digital audio anélyclic prefix. Specifically, the channel estimate is obtained by
video broadcasting (DAB and DVB), WIMAX (Worldwide maximizing the log likelihood of the channel given the output
Interoperability for Microwave Access), high speed moden##ta. Finding the likelihood function of a linear system can
over digital subscriber lines, and local area wireless broadbdp very difficult. However, in the OFDM case, central limit
standards such as the HIPER-LAN/2 and |EEE 802.11a, wiiguments can be used to argue that the input is Gaussian

data rates of up to 54 Mbps [1]. OFDM is also beindl2],

[14]. Under the assumption that the noise is Gaussian,

considered for fourth-generation (4G) mobile wireless systerits makes the output Gaussian and allows us to easily write

[2]. down the likelihood expression of the output. The likelihood
In order to achieve h|gh data rate in OFDM, receivers mug.{nction can then be maximized to obtain the ML estimate of

estimate the channel efficiently and subsequently the ddf3 channel.

Many techniques have been presented by the researchersAf.opaper Organization and Notation
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from DSR, KFUPM (Project No. SB090008). overview of the OFDM system in Section Il. The log likeli-



Table 1. Notation used in the paper or in matrix form

[ Variable | Notation employed | Y—HX+N 3)
Scalars Small-case letters
Veciors (sen?aﬁ& )Case boldface Tetiers where n is the output noise which we take to be white
(e.g.x) Gaussian. The matric&, H and X are of sizel N + L) x 1,
Matrices Upper-case boldface letters (N+L)x (N + 2L) and (N + 2L) x 1, respectively.
f d e
Vectors | in Calli ic notati
eetors In frequency domal (eég"%p e notation [1l. EVALUATING THE LOG LIKELIHOOD FUNCTION
E;E\;ifsloefn;'f;igglae vectol th) over the variabie To derive the likelihood function of a the output of a linear
e.g. X) system, the input is assumed usually to be Gaussian (otherwise
Variables as function of timg Time index appears as a subscript writing down the likelihood function can be very difficult).
: , (€.0. Xi) This is usually not true in a data communication system as
Cyclic prefix Underlined vector . . .. .
e.g.x) the input is generated from a finite alphabet. Fortunately in an
Super symbol Overlined vector OFDM system, the time domain input can be assumed to be
(eg.z =[] «I'N" = [a] 2] 2]1") | Gaussian by central limit theorem arguments [14]. Specifically,

from equation (1),we have the element by element relationship

hood function is derived in Section Ill by using the Gaussiahi (1) = VNQXi, 2i(2) = VN@Xi, ...zi(N) = VNan X,

assumption on transmitted data. The channel can be estim%%req_ are the rows ofQ. In other words, this shows that
- .. . - - - - . j . 1
by maximizing the likelihood function. For blind estlmat|on,m}(j) is a large (weighted) sum of iid random variables. The

_the likelihood _function should have global _maxima when ¢ idity of this assumption is evident from the histogram plot
is plotted against the channel taps. Experimental results own in Figure 1 which describes the distribution of the
log likelihood function plot against channel taps are discuss?r nsmitted datac.

in Section IlI-B which show that it is multi-modal. To solve
this problem, two methods have been presented in this paper.
One is the blind channel estimation method implemented 45
using the Genetic algorithm (Section IV) and the second one
is a semi-blind approach using steepest descent algorithm
(Section V). The gradient of likelihood function involved in 351
the steepest descent algorithm is also derived in this section.
The simulation results are presented in Section VI followed
by the conclusion in Section VII.

a0t

251

Il. SYSTEM OVERVIEW 200

In this paper, a simple OFDM system is used which involves
transmitting data in symbolst; of length N each. Each
symbol then undergoes an IDFT operation to produce the time
domain symbole;, i.e.

r; = \/NQX“ (1)

where@ is an IDFT matrix of sizeV x N. A cyclic prefix of %
length L is appended to form the super-symbgl (Refer to _ )
Table 1 for further explanation). We assume an FIR channel ~ Fig- 1. Number of samples vs transmitted dai&)(

of maximum lengthL + 1 given by
Thus from this and the fact that noise is also Gaussian, we
h=[ho h - hy ] @ can conclude that outplt” will also be Gaussian with pdf
For reasons to be explained shortly, we will focus in this paper
on time domain signals. Here, the input/output relationship is Y ~N(0, 3y)
given by

Number of samples

15

10

0.1

where Xy is the second order moment & which (from
hy hp—1 -+ 0 z;_, equation (3)) is given by

0 hr 0
Y. Z; n;

[ = ] = . . o + [ } >y = E [HXXTHT} + 021 (4)

0 0 - hy z; = HXIxH" + %I (5)



whereXx is a matrix of size N +2L) x (N +2L) given by

¥x = E[XXT]
Liq
€L; ~T
= FE ii [ “i—1 QZT‘ Z; 2? ]
x

- 0 0 Iy.. O ©)
0 I 0 Iy

The pdf of outputY” can thus be written as

P(Y|h) = m exp(-Y Sy Y) )

So, the log likelihood function is given by

ambiguity inherent in all blind techniquesin Figure 2 the
log likelihood function is plotted against the remaining two

L(Y|h) = —1In det (Zy) — YTsy~'y (8) channel taps; andhy when 02 =0.1.
This shows that a completely blind approach for channel
A. Maximum Likelihood Estimation of the Channel IR estimation would be challenging. In what follows, we present
We can use the likelihood function derived above to obtaf© @pproaches to solve this channel estimation problem.
the ML estimate of the channél by maximizing it. i.e. IV. BLIND ESTIMATION USING GENETIC ALGORITHM
hyr = max £ Genetic algorithm (GA) is an iterative stochastic search

algorithm which was introduced by Holland [17] in 1975.

max —In det (8y) — Y73y 'Y (9) GA finds the best solution in a population of candidate
h solutions (called chromosomes) based on natural selection
which depends only on the output d&taand the channek  (survival of the fittest) and evolution. Each chromosome has
(through the dependance Bfy on h). a fitness value associated with it which in our algorithm is

This approach for channel estimation using the Gaussifnd by evaluating the likelihood function in equation (8).
input assumption is quite common in single carrier caséhe next generation is produced by using genetic operators
but has not been applied in the OFDM case. There are tlie mutation and crossover. As the channel IR is composed

disadvantages of applying it in the single carrier case [15]f real values, real coded genetic algorithm [18] has been
[16]: implemented. As the likelihood function is multi-modal (de-

hsl%ribed in Subsection III-B), we have employed GA here
not the case in a single carrier system for blind channel estimation due to its ability to avoid local
X é'gaxima/minima. The algorithms used in the main operators

» Even if input is Gaussian, this method is usually pha n the reproduction process (mutation and crossover) are as
blind i.e. it can only be used to identify minimum phas% production p (mutati ver)

systems. ollows:

We avoid both of the problems in the OFDM case as tHfe Crossover
input is Gaussian by central limit theorem arguments and asCrossover is the most important component of a GA. Itis a
the input is cyclostationary (due to the presence of the cycligethod of combining the features of two parent chromosomes
prefix)[8]. to form two offspring. There are many crossover algorithms
Unfortunately, as we shall show next, the likelihood functiopresent in literature but we selected BieX-« algorithm (with
is not uni-modal (it could have local maxima) and so finding = 0.5) due to its superior performance in real coded genetic
the global maxima might be challenging. algorithms [18].

o The method assumes that the input is Gaussian whic

B. Plot of Likelihood Function vs Channel Taps B. Mutation

The likelihood function is plotted against the channel taps Mutation is a method in which an arbitrary element of a

to investigate whether it has a global maxima. The input da:iglected chromosome is a_ltered to prevent th_e premature con-
is considered to be Gaussian of length= 64 and a cyclic vergence of GA to suboptimal solutions. GA is able to avoid

prefix of lengthL = 2 is u_sed._ Channe_l is consldefec_i to_be an1a channel with only two effective taps is chosen so that we can plot the
FIR of lengthL 4+ 1 = 3 with first tap fixed atl to avoid sign likelihood function against them in three dimensions.



local minima/maxima due to this operator. Like crossovewhere

researchers have presented many mutation operators. We have C B O - 0

used theNon-uniform mutatioralgorithm as it is very appro- 0 C B 0

priate for real coded genetic algorithms [18]. G-

V. SEMI-BLIND ESTIMATION USING STEEPESTDESCENT o o0 0 - B
ALGORITHM o B 0 - C

A semi-blind approach can also be pursued where we use d "€ factor matrixG' has the following properties
few pilots to obtain an initial rough estimate of the channel and 1) It is a square matrix of siz&V + L.
subsequently improve the channel estimate using the Steepeg) It is full rank if and only if &z, # 0
Descent algorithm i.e. Remember that we need to differentiate the likelihood
P function with respect to the channel IR. Now, the likelihood
a) — 75 (10) function is a function of¥y which is a function ofG (see
Ohx) equation (14)). The matrbG is itself a linear function of

where . is called step size which is a small scalar value arffi€ channel IR. Specifically, we can wri as a linear
h(; represents the estimate of chanheht k' iteration. The combination ofL + 1 constant matriced”y, F'y, ..., F'r, i.e.
algorithm continues to iterate until a maximum number of L

iterations is reached or until a stopping threshold is crossed. G = ZhiFi (15)

It can be seen from equation (10) that it involves the gradient i=0

of the likelihood function with respect to the channel. Thus Wehe matrixF'; is an indicator matrix, i.e. it indicates the entries
need to evaluate this gradient to implement the steepest desegnty that depend orh,;. We can thus write

algorithm. We start by representing the channel convolution

ki) =h

matrix H in block form. GT — ZL: hFT (16)
A. Writing H in Block Form or =
We can write the convolution matrix in the following block L
form vec(GT) = Z h; vec(F7)
C B =0 N
C B ho
H = 11 1
1D = [ vec(F{) vec(F]) --- wvec(F7)] )
C B h.
L
where = Fh' 17)
[ o 0 0 where thevec operation transforms a matri& into a long
ha ho -+ 0 column vector consisting of the concatenation of the columns
B = : 12)
: of G. Thus,
| he—1 hp—2 -+ ho G A D vee(G)
[ hy hpq1 - M oh oh
0 hr - hy = FT (18)
C = : : : (13)
: R We will use this relation in evaluating the gradient©fw.r.t
| 0 0 - kg h in the following subsection.
B. Evaluating Second Order Moment of Output C. Gradient of likelihood functiorC w.r.t channel IRk

As the log likelihood function (equation (8)) involves second We would like to find the gradient oL w.r.t h. By the
order moment of outpuY’, we want to evaluate it in terms of chain rule, we can write
channelh or specifically in terms ofB andC. AL OG 0%y 0L
The output autocorrelation matriXy can be decomposed oh ~ 9h 0G 0%y
as

(19)

In carrying out the differentiatiorg’z%, Yy is treated as a
Sy = GG' + o1 (14) general matrix. Thus, despite the fact ti¥{, is symmetric



and positive definite, we ignore this fact in obtamng% Table 2. Simulation Parameters used to implement GA

Population Size 100
All properties of Xy are captured in its relation t& and'in Nuober of Gons afions =5
the relation of the latter td. ol Cross-over Scheme BLX-« Cross-over ¢ = 0.5)
We have already evaluate%%. Lets now evaluatejs=. Cross-over Probability 0.8
We can show that [19] Y Mutation Scheme Non-Uniform Mutation
Mutation Probability 0.08
oL 0 '
= _ _82 (ln det(Ey) i YTEY_lY) Number of Elite Chromosomes 5
Y
= —vec(By ) - —tr(YYT2y !
vec(By ) I35y r( vy ) 10
oL -T -T T -T
- = —VGC(EY — EY YY EY ) (20)
0Xvy
Similarly in carrying out the differentiatioA=¥-, we ignore w07

the sparse structure @. The sparse structure is captured in
the relation ofG to the channel parameteks .
) 0 . @ 10

=y 2r

G PTe —(GG" +.1)
= TG +K u(G'®1,) (21)

A+ Ch. est. using 6 pilots and corr.
—=&— Genetic Algorithm
¢ - Steepest Descent method

where the second line is obtained by the product rule, and

® and K, stand for Kronecker product and Commutation —<— Ch. est. using L+1 pilots and corr.
matrix respectively [19]. Combining the results (20) and (21) .[L===Fteh : ‘ ‘
yields 0 5 10 15 20 25 30
SNRin dB
oL

oG = 2 vee|GTEy - GTEY‘lYYTEY‘l} (22)

where we used the property that
Kgmvec(AT) = vec(A)
So, equation (19) can now be written as

Fig. 3. BER vs SNR comparison for BPSK modulated data

A. BER vs SNR Comparison for BPSK Modulated Data
In Figure 3, the proposed algorithms are compared with

oL _ 9GIL the above mentioned methods when the input data is BPSK
oh O0h 0G modulated. In this case, the semi-blind algorithm is initialized
= —2F"vec [GTEY‘I —GTEY_IYYTEY_l:I with an estimate obtained by using pilots and channel

tr(FoG Sy ~! — FoG Sy 'YY TSy ) correl_ation. The stgp ;iz;e used in this case wag5 x 10*3:

tr(F1GTSy ! — F1GTSy 'Y Y TSy ) This figure clearly indicates that both the proposed algorithms
= -2 , perform quite close to the case when channel is estimated
' using L + 1 pilots.

oL
oh ;

tr(FLGTEy ' - FLGTEy 'Y YTy )
which is our required gradient of sizel, + 1) x 1. This B. BER vs SNR Comparison for 16-QAM Modulated Data

gradient can be used in equation (10) to estimate the channéfigure 4 shows the performance of the proposed algorithms

using the steepest descent algorithm. for the case ol 6—QAM modulated data. Similar to the BPSK
case, the semi-blind algorithm is again initialized with an
VI. SIMULATION RESULTS estimate obtained by using pilots and channel correlation.

We consider an OFDM system witlV = 64 and cyclic The step size: used in this case wag5 x 10~%. It can be
prefix of length L = 8. The OFDM symbol consists of seen from the figure that both the proposed algorithms perform
BPSK or16-QAM symbols. The channel IR consists ®fid quite well for the case of non-constant modulus data specially
Rayleigh fading taps. The parameters used in implementing #itehigh SNR.
blind approach using GA are listed in Table 2. The proposed
semi-blind algorithm was run fa20 iterations in all cases.

We compare the BER performance of the proposed al-In this paper, we presented two methods for channel es-
gorithms with the following two casesi) Perfectly known timation and data recovery in OFDM transmission. It was
channel, andii) Channel estimated using + 1 pilots. The argued in this paper that the transmitted data in OFDM is
simulation results for BPSK anth-QAM modulated data are Gaussian. Thus the output is also Gaussian and its pdf can
discussed below: be evaluated easily. The channel can then be estimated by

VII. CONCLUSIONS
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107
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—&— Genetic Algorithm N [14]
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Fig. 4. BER vs SNR comparison fart6—QAM modulated data
[17]

maximizing the likelihood function given the output pdf. Thé'8l
experimental results unfortunately demonstrated that the log
likelihood function does not have a unique maxima when [it9]
is plotted against the channel taps. Therefore, it is difficult to
come up with a convex formulation to pursue a blind approach.
However, a blind channel estimation algorithm using GA was
proposed due to its ability to avoid local minima. A semi-

blind algorithm was also presented using the steepest descent

algorithm initialized by a rough estimate of channel obtained
by using a few of pilots and channel correlation. Simulation
results show the favorable performance of the two proposed
algorithms for constant as well as non-constant modulus data.
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