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Opportunistic Random Beamforming with
Precoding for Spatially Correlated Channels

Tareq Y. Al-Naffouri

Abstract— It has been showed recently that dirty paper coding
(DPC) achieves optimum sum-rate capacity in a multi-antenna
broadcast channel with full channel state information at the
transmitter. With only partial feedback, random beamforming
(RBF) is able to match the sumrate of DPC for large number
of users. However, in the presence of spatial correlation, RBF
incurs an SNR hit as compared to DPC. In this letter, we explore
precoding techniques to reduce the effect of correlation on RBF.
We thus derive the optimum precoding matrix that minimizes
the rate gap between DPC and RBF. Given the numerical com-
plexity involved in calculating the optimum precoder, we derive
approximate precoding matrices that are close in performance
to the optimum precoder.

I. I NTRODUCTION

Consider a broadcast scenario where a base station with
M antennas is to broadcast ton users each equipped with
one antenna. Dirty paper coding (DPC) is a technique that
maximizes the sum rate in this scenario [2], [1]. However,
it requires full channel state information of all users at the
base station. On the other hand, random beamforming (RBF)
requires only SINR feedback and is able to match the sum
rate of DPC for high number of users at a rate of [3]

γ = M log log n + M log
P

M
whereP is the total power transmitted. For spatially correlated
channels, however, the sumrate incurs a hit and it scales as

γ = M log log n + M log
P

M
−M log c (1)

where c ≥ 1 is constant that depends on the eigenvalues of
the channel correlation matrixR and the multiuser broadcast
technique used. Specifically, the hit in the DPC case is given
by log c = log det(R)−

1
M and for random beamforming, the

hit is given by (‖φ‖2R−1
∆= φ∗R−1φ)

log c = E log ‖φ‖2R−1 (2)

whereφ is an isotropic random beam vector.
The aim of this paper is to explore precoding techniques

that will improve the performance of RBF and reduce the gap
between RBF and DPC in the correlated channel case. The
paper is organized as follows. After introducing the channel
model, we introduce random beamforming with precoding and
derive the optimum precoding matrix in Section III. Since
the optimum precoder is difficult to evaluate, we derive in
Section IV three approximate precoding matrices. We finally
verify our results with simulations and present our conclusions.
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II. CHANNEL AND SIGNAL MODEL

The signal received by theith user is given by

Yi(t) = HiS(t) + Wi, i = 1, . . . , n, (3)

where theM×1 transmit vectorS is subject to the power con-
straintE{S∗S} ≤ P and whereWi ∼ CN(0, 1) is the additive
noise. The channelHi is a1×M complex vector, distributed as
CN(0, R) independently across users. The covariance matrix
R admits the eignevalue decompositionQRΛQ∗R. We also
assume thattr(R) = M In our simulations, we will use
covariance matrices controlled by a control parameterα and
taking the form (forM = 2 andM = 3 antennas)

R2 =
[

1 α
α 1

]
R3 =




1 α α2

α 1 α
α2 α 1


 (4)

III. R ANDOM BEAMFORMING WITH PRECODING

To counter the effect of channel correlation, we introduce
beamforming with precoding where the transmitter sendsαAS
instead of sendingS. By requiring that α2 ≤ M

tr(A∗A) ,
we maintain a power constraint ofP on the input. The
input/output equation for this new choice of input reads

Yi = αHiAS(t) + Wi

In other words, we are using the familiar RBF with the
effectivechannel

H̃i = αHiA

which exhibits a correlation ofα2R̃ = α2A∗RA. In light of
(1)-(2), we see that RBF with precoding yields the sum-rate

γPC = M log log n + M log
P

M
−ME log ‖φ‖21

α2 R̃−1

= M log log n + M log
P

M
− h(A) (5)

whereh(A) is the hit incurred by using a precoding matrixA

h(A) = M log
tr(A∗A)

M
+ ME log ‖φ‖2

R̃−1 (6)

where in arriving at (5) and (6), we used the fact that the choice
α2 = M

tr(A∗A) will maximize the sum-rate. The following
lemma shows that the optimumA has a special structure.

Lemma: The optimum precoding matrixAopt can be writ-
ten as

Aopt = QAoptD
1
2
Aopt

where QAopt is an orthonormal matrix andD
1
2
Aopt is a

diagonal matrix with positive entries.
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Proof: Consider the precoding hith(A) in (6) and let
R̃ = Q̃Λ̃Q̃∗ denote the eigenvalue decomposition ofR̃.
Since φ is isotropic, it is invariant under multiplication by
the orthonormal matrix̃Q. Thus1,

E‖φ‖2
R̃−1 = E‖φ‖2

Q̃Λ̃−1Q̃∗ = E‖Q̃∗φ‖2
Λ̃−1 = E‖φ‖2

Λ̃−1

Hence, the hit can be written as

h(A) = M log
tr(A∗A)

M
+ ME log ‖φ‖2

Λ̃−1

Now the first term of the hit depends ontr(A∗A) and hence
tr(AA∗). The second term depends on the eigenvalues ofR̃,
i.e. of A∗RA, or equivalently the eigenvalues ofRAA∗. So
both terms of the hit are determined byAA∗. One choice of
the optimum matrixAopt is thusAopt = QAopt

D
1
2
Aopt

where
QAopt

is orthonormal andDAopt
is diagonal with positive

entries. This proves the lemma.

A. DeterminingQopt

An intuitive choice is to setQopt = QR. In the following,
using an approach inspired by [5], we show that this choice is
actually optimum. To this end, letΠl be a diagonal matrix
with all 1′s on the diagonal except for a−1 at the lth
entry and defineAl = QΠlD

1
2 . This induces the effective

correlation R̃l. The hit that results by using either of the
precoding matricesA or Al is the same. To see this, note
that tr(A∗A) = tr(A∗l Al) = Tr(D). Moreover,

‖φ‖2
R̃−1

l

= ‖φ‖2
D− 1

2 ΠlQR−1Q∗ΠlD
− 1

2
= ‖ΠlD

− 1
2 φ‖2QRQ∗

Note however that the distribution ofφ is unchanged by the
changing the sign of thelth entry. Hence,

E log ‖φ‖2
R̃−1

l

= E log ‖ΠlD
− 1

2 φ‖2QRQ∗

= E log ‖D− 1
2 φ‖2QRQ∗ = E log ‖φ‖2

R̃−1

Thus, both terms of the hits are the same andh(Ã) = h(A).
Using Jensen’s inequality, we can show that

1
2

log ‖φ‖2
R̃−1 +

1
2

log ‖φ‖2
R̃−1

l

≥ log ‖φ‖2
( 1
2 R̃+ 1

2 R̃l)−1

It thus follows that

h(A) =
1
2
h(A) +

1
2
h(Al)

≥ M log
tr(D)

M
+ ME log ‖φ‖2

( 1
2 R̃+ 1

2 R̃l)−1

Note that the weight matrix above can be rewritten as

1
2
R̃ +

1
2
R̃l =

1
2
Q∗RQ +

1
2
ΠlQ

∗R−1QΠl

From the right side, we see that the weight matrix has entries
entries equal to those ofQ∗RQ exceptthe off diagonals lying
on thelth column orlth row which are zero. This argument can
be repeated forl = 1, . . . , M. Hence, nulling the off diagonal
entries ofQRQ∗ can only reduce the hit. Thus,QRQ∗ should
be diagonal, i.e.Q = QR.

1It is easy to see that for any matricesG andF and vectora, ‖a‖2G∗FG =
‖Ga‖2F .

B. DeterminingDopt

We have so far established thatAopt = QRD
1
2
opt whereDopt

is a diagonal matrix to be determined. The hit in this case is
given by

h(Aopt) = M log
tr(Dopt)

M
+ E log ‖φ‖2

D−1
optΛ

−1

Taking the derivative with respect toith diagonal element of
Dopt, di and setting it to zero, yields

1
di

E




1
diλi

|φ(i)|2
‖φ‖2

D−1
optΛ

−1


 =

1
tr(Dopt)

(7)

where φ(i) is the ith element ofφ and where in arriving
at (7), we exchanged the differentiation and expectation op-
erations. Thus, we have a set ofM implicit equations for
d1, d2, . . . , dM . We can solve these equations numerically
provided we first obtain the expectation of the random variable
Z1 that appears in (7). We can show (see [4]) that for diagonal
matricesB and C, the CDF of the more general random
variableZ = ‖φ‖2B

‖φ‖2C
is given by2

FZ(x) =
M∑

i=1

(ai − bix)M−1

∏
k 6=i((ak − ai)− (bk − bi)x)

u(−ai + bix)

where u()̇ is the unit step function. By settingB =
diag(0, . . . , 1

diλi
, . . . , 0) and C = D−1Λ−1, we obtain the

CDF of Z1. With the support ofZ1 over the interval(0, 1), it
is expectation is given by

E[Z1] =
∫ 1

0

(1− FZ1(z1))dz1

IV. A PPROXIMATE PRECODINGMATRICES

As seen above, to obtain the optimum precoding matrix,
we need to simultaneously solveM nonlinear equations.
We thus derive in this section some approximate precod-
ing matrices. An intuitive choice of the precoder is the
zero forcing oneAZF = QRΛ−

1
2 , which produces the hit

hZF = M log tr(R−1)
M . This performs worse than RBF as

demonstrated by simulations. The MMSE precoderAMMSE =
QR(Λ + βI)−

1
2 is a special case of the optimum precoder

that requires a 1-dimensional optimization. It is easy thatβ is
obtained by solving one fixed point equation

tr(Λ + βI)−2

tr(Λ + βI)−1
= E


 1

β + 1
‖φ‖2

Λ−1


 (8)

The third precoder is obtained by minimizing an upper bound
on the hit. To this end, note that the the difficult part in
minimizing the hit is the term that depends onφ. So we rewrite
this hit as

h(A) = M log
tr(A∗A)

M
+ ME log ‖φ‖2(A∗RA)−1

= M log
tr(A∗A)

M
+ M log tr((A∗RA)−1)

+ ME log ‖φ‖2(A∗RA)−1

tr(A∗RA)−1

2In [4], we derived the CDF‖φ‖2A. The derivation of a ratio of such
quantities is more challenging but is omitted for brevity.
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We now minimize the sum of the first two terms of the hit and
ignore the 3rd term. There are two justifications for doing so.
Thus, note that the first two terms constitute an upper bound
on the hit because

log ‖φ‖2(A∗RA)−1

tr(A∗RA)−1

= log ‖φ‖2(Λ̃)−1

tr(Λ̃−1)

≤ log ‖φ‖2 tr(Λ̃−1)
tr(Λ̃−1)

= 0

whereΛ̃ is the diagonal matrix of eigenvalues ofA∗RA.

h(A) = M log
tr(A∗A)

M
+ log tr(A∗RA)−1

Taking the first derivative with respect toA and setting the
result to zero yields 2

tr(A∗A)A = 2
tr(A∗RA)−2 RA(A∗RA)−1,

or

AA∗RAA∗ =
tr(A∗A)

tr(A∗RA)−1
I (9)

So AA∗ is a left and a right inverse ofR. Using the fact that
R = QRΛQ∗R, we can show that the following choice satisfies
(9).

AAppx = QRΛ−1/4

V. SIMULATIONS

We consider a broadcast scenario with a base station having
M = 2 andM = 3 antennas. The channels exhibit correlations
matrices (4) parameterized by0 ≤ α < 1. We evaluate
in Figure 1 the sum-rate of RBF and RBF with precoding
(optimum, MMSE, ZF, and approximate) forα = .5 and
M = 2. Figures 1 and 2 show the hit incurred by these
techniques for various degrees of correlation forM = 2
and M = 3, respectively. We note that optimum precoding
outperforms other precoding techniques (as expected) closely
followed by MMSE precoder while zero-forcing precoding is
inferior to RBF.

VI. CONCLUSION

In this paper, we considered random beamforming in a
spatially correlated regime. While RFB matches DPC for
uncorrelated channels (in the large number of users regime),
it incurs an SNR hit in the presence of correlation. The paper
suggested precoding techniques as a way to counter the effect
of correlation. Specifically, we derived the optimum precoder
and three approximate precoders. Apart from zero forcing, the
precoders obtained all outperform RBF and manage to reduce
its gap with DPC.
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Fig. 1. Sum-rate versus the number of users in a system with M = 2, P =
10 andα = 0.5
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Fig. 2. Sum-rate loss versus correlation factorα in a system with M = 2,
P=10 and n=400
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Fig. 3. Sum-rate loss versus correlation factorα in a system with M = 3,
P=10 and n=100


