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Abstract— It has been showed recently that dirty paper coding Il. CHANNEL AND SIGNAL MODEL

(DPC) achieves optimum sum-rate capacity in a multi-antenna : . . L
broadcast channel with full channel state information at the The signal received by thigh user is given by

transmitter. With only partial feedback, random beamforming Y;(t) = H;S(t) + W;, i=1,...,n, (3)
(RBF) is able to match the sumrate of DPC for large number

of users. However, in the presence of spatial correlation, RBF where theM x 1 transmit vectolS is subject to the power con-
incurs an SNR hit as compared to DPC. In this letter, we explore straint£{S*S} < P and wherd¥V; ~ CN(0, 1) is the additive
precoding techniques to reduce the effect of correlation on RBF. . . . g

We thus derive the optimum precoding matrix that minimizes noise. The.channeﬂli is alx M complex vector, d|St.”bUted as .
the rate gap between DPC and RBF. Given the numerical com- CV(0, R) independently across users. The covariance matrix
plexity involved in calculating the optimum precoder, we derive R admits the eignevalue decompositigpzrAQ%. We also
approximate precoding matrices that are close in performance assume thatr(R) = M In our simulations, we will use

to the optimum precoder. covariance matrices controlled by a control parametemnd

taking the form (forM = 2 and M = 3 antennas)

I. INTRODUCTION 1 o o2
Consider a broadcast scenario where a base station with _ |1« . —
] - ! R, 1 Rs a 1 « (4)
M antennas is to broadcast io users each equipped with a o2 o 1

one antenna. Dirty paper coding (DPC) is a technique that
maximizes the sum rate in this scenario [2], [1]. However, Ill. RANDOM BEAMFORMING WITH PRECODING

it I’equil’eS full channel state information of all users at the To counter the effect of channel COI’re'ation, we introduce

base station. On the other hand, random beamforming (RBfgamforming with precoding where the transmitter sends

requires only SINR feedback and is able to match the sYfstead of sendingS. By requiring thata? < - (%A 7
rate of DPC for high number of users at a rate of [3] we maintain a power constraint aP on the input. The

input/output equation for this new choice of input reads

P
v = MloglognJerogM

whereP is the total power transmitted. For spatially correlated
channels, however, the sumrate incurs a hit and it scales a& other words, we are using the familiar RBF with the

P effectivechannel
szloglogn—l-MlogM—Mlogc Q) H;, = aH; A

wherec > 1 is constant that depends on the eigenvalues which exhibits a correlation ofi2R = a2A*RA. In light of
the channel correlation matrik and the multiuser broadcast(1)-(2), we see that RBF with precoding yields the sum-rate
technique used. Specifically, the hit in the DPC case is given

P
by log ¢ = logdet(R)~* and for random beamforming, the ypc = M loglogn + M log M MElog ||¢||2%R71
hit is given by (¢]|%_, 2 ¢*R~1¢) P “
R~ , = Mloglogn + Mlog — — h(A) (5)
loge = Elog |¢]/7-1 @ M

whereh(A) is the hit incurred by using a precoding matrix
tr(A*A)
M

where¢ is an isotropic random beam vector.
The aim of this paper is to explore precoding techniques 9
that will improve the performance of RBF and reduce the gap +MElog|[¢] ;- ©)
between RBF and DPC in the correlated channel case. TRere in arriving at (5) and (6), we used the fact that the choice
paper is organized as follows. After introducing the channgP — % will maximize the sum-rate. The following
model, we introduce random beamforming with precoding anémma shows that the optimur has a special structure.

derive the optimum precoding matrix in Section Ill. Since Lemma: The optimum precoding matri¥,,; can be writ-
the optimum precoder is difficult to evaluate, we derive ifen as

. . . . - 1
Section IV three approximate precoding matrices. We finally Aopt = Qaopt D3 oy
verify our results with simulations and present our conclusions. .

where Qo is an orthonormal matrix and)j, . is a

h(A) = M log
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_Proof: Consider the precoding hik(A4) in (6) and let B. DeterminingD,;

. g ~* . e l
R = QAQ* denote the eigenvalue decomposition Bf We have so far established thigy,; = QrDZ,, whereD,p,

Since ¢ s sotropic, it Is_invariant under multiplication by is a diagonal matrix to be determined. The hit in this case is
the orthonormal matrix). Thus', given by

g%, = Elolyig. = EIQ I3, = Bl

tr(D,
h(Aopr) = Mlog ZP2) 4 progygg2 ,
Hence, the hit can be written as o

M

i Taking the derivative with respect tith diagonal element of
h(A) = Mog tr(?/‘l) + MElog 6%, Dopt, d; and setting it to zero, yields
1 -\ |2
Now the first term of the hit depends en(A*A) and hence iE ax [9(0)] _ 1 @)
tr(AA*). The second term depends on the eigenvalueR,of i |19l 1 o | r(Dopt)

i.e. of A*RA, or equivalently the eigenvalues &fAA*. So

both terms of the hit are determined byA*. One choice of WNere ¢(i) is the ith element of¢ and where in arriving
. . . 1 at (7), we exchanged the differentiation and expectation op-
the optimum maitrixA,y: is thus Aope = Qa,,, D3, Where

. h U andD o di | wi: i erations. Thus, we have a set 8f implicit equations for
QA“.M IS orthonormal andl’s,,, IS dlagonal with positive di,ds,...,dy. We can solve these equations numerically
entries. This proves the lemma.

provided we first obtain the expectation of the random variable
7, that appears in (7). We can show (see [4]) that for diagonal
A. DeterminingQop¢ matrices B and C, the CDF of the more general random

An intuitive choice is to set),,+ = Qr. In the following, variableZ = % is given by
using an approach inspired by [5], we show that this choice is o Mt
actually optimum. To this end, Idil; be a diagonal matrix Fy(x) = (a; — bix)
with all 1’s on the diagona! except for a1l at the ith P [Tisi((ar — a;) — (b, — b;)x)
entry and defined; = QII;Dz. This induces the effective - ) . .
correlation ;. The hit that results by using either of theVhere u() is the unit step function. By setting3 =

. 1 _ —1A-1 i

precoding matricesd or A; is the same. To see this, notedlag(of"’ﬂ"“’o) andC = D™A , We obtain the

thattr(A* A) = tr(A7 A;) = Tr(D). Moreover CDF of Z;. With the support ofZ; over the interval0, 1), it
! ’ is expectation is given by

u(—a; + bix)

ol =012 1 oy ot = D26l rg- !
1 D™ 2II;,QR I.Q I-IZD .2 . E[Zﬂ :/ (1 *FZl(Zl))dZI
Note however that the distribution af is unchanged by the 0
changing the sign of thé&h entry. Hence, V. APPROXIMATE PRECODING MATRICES
ElogquzSIIf%l_l _ Elog||HlD*5¢||2QRQ* As seen above, to obtain the optimum precoding matrix,

we need to simultaneously solv&/ nonlinear equations.
= Elog||D’%¢HZ)RQ* :Elog||¢>|\§~%,1 We thus derive in this section some approximate precod-
ing matrices. An intuitive choice of the precoder is the
zero forcing oneAzr = QRA*%, which produces the hit
hzrp = Mlog % This performs worse than RBF as
demonstrated by simulations. The MMSE precodefnsg =
Qr(A + ﬂI)‘% is a special case of the optimum precoder

Thus, both terms of the hits are the same and) = h(A).
Using Jensen’s inequality, we can show that

1 2 1 2 2
S10g 16113 + 3 log 913 = log 812, 5,1 7

It thus follows that that requires a 1-dimensional optimization. It is easy tha
1 1 obtained by solving one fixed point equation
hA) = Zh(A)+ Fh(A) (1 1
r(A + B
tr(D —_— <  =F| — 8
> Mlog ](W) +MEIogllol{s 4,1, tr(A+ 1)1 A+ W v

Note that the weight matrix above can be rewritten as The third precoder is obtained by minimizing an upper bound
on the hit. To this end, note that the the difficult part in

1~ 14 1 1
St Sh = gQ*RQ + §H1Q*371QH1 minimizing the hit is the term that depends nSo we rewrite
this hit as
From the right side, we see that the weight matrix has entries (A" A)
entries equal to those @)* RQ) exceptthe off diagonals lying h(A) = Mlog M + MElog ||¢H?A*RA)71
on thelth column orith row which are zero. This argument can tr(A*A)
be repeated fof = 1, ..., M. Hence, nulling the off diagonal = Mlog ———+M logtr((A*RA)™1)

entries ofQ RQ* can only reduce the hit. Thu@RQ* should

2
be diagonal, i.eQ = Qx. + MEIlog||lI” aspay-1

tr(A*RA)—1

Litis easy to see that for any matricesand F and vectora, ||a||2. po = 2In [4], we derived the CDF||¢||%. The derivation of a ratio of such
|Gall%. quantities is more challenging but is omitted for brevity.



We now minimize the sum of the first two terms of the hit and
ignore the 3rd term. There are two justifications for doing so.
Thus, note that the first two terms constitute an upper bound 65

on the hit because

tr(A=1)
10g |91 41 = logllglP -1 < log o] —=—=
AT AT HATT tr(A1)

whereA is the diagonal matrix of eigenvalues df RA.

Sum rate hit

h(A) = Mlog # +log tr(A*RA) ™"

= 0 55r

/s —4— RBF without correlation
— -~ opt. prec.
—=— mmse prec.
approx prec.
— — —pure RBF
—&— zero forcing

Taking the first derivative with respect td and setting the a5ty
result to zero yields;f-p4 = tr(A,jm)_i,RA(A*Ii’A)—l, .
or o
tr(A*A)
AA*RAA* = ——————— T 9 .
. tr(A*RA) 1 ©) Fg. 1.
10 anda = 0.5

So AA* is a left and a right inverse aR. Using the fact that
R = QrAQ7,, we can show that the following choice satisfies
(9).

AAppx = QRA_1/4

V. SIMULATIONS
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Sum-rate versus the number of users in a system with M =2, P =

We consider a broadcast scenario with a base station having
M = 2andM = 3 antennas. The channels exhibit correlations
matrices (4) parameterized by < a < 1. We evaluate
in Figure 1 the sum-rate of RBF and RBF with precoding
(optimum, MMSE, ZF, and approximate) fax = .5 and
M = 2. Figures 1 and 2 show the hit incurred by these
techniques for various degrees of correlation far = 2
and M = 3, respectively. We note that optimum precoding
outperforms other precoding techniques (as expected) closely
followed by MMSE precoder while zero-forcing precoding is

sum rate hit

— — — - opt. prec.
|| —#—— mmse prec.

approx prec.
77777 pure RBF

—6— zero forcing

inferior to RBF.

VI. CONCLUSION Fig. 2.

spatially correlated regime. While RFB matches DPC for
uncorrelated channels (in the large number of users regime),
it incurs an SNR hit in the presence of correlation. The paper
suggested precoding techniques as a way to counter the effect
of correlation. Specifically, we derived the optimum precoder
and three approximate precoders. Apart from zero forcing, the
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Sum-rate loss versus correlation facton a system with M = 2,
In this paper, we considered random beamforming in Fz10 and n=400

precoders obtained all outperform RBF and manage to reduce
its gap with DPC.
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