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Abstract

The class of LMS algorithms employing a gen-
eral error nonlinearity is considered. The calculus
of variations is employed to obtain the optimum er-
ror nonlinearity for an independent and identically
distributed input. The nonlinearity represents a uni-
fying view of error nonlinearities in LMS adaptation.
In particular, it subsumes two recently developed
optimum nonlinearities for arbitrary and Gaussian
inputs. Moreover, several more familiar algorithms
such as the LMS algorithm, the least-mean fourth
(LMF) algorithm and its family, and the mixed norm
algorithm employ (non)linearities that are actually
approximations of the optimum nonlinearity.

1 Introduction

The least-mean square (LMS) algorithm [1] is
one of the most widely used adaptive schemes.
It has several desirable features and some limita-
tions. As such, several LMS-variants have been
proposed that trade some of the LMS features for
an enhanced performance in some of its limitations.
Of particular importance is the class of least-mean
square algorithms that employ an error nonlinearity
f(e(k)) instead of the (linear) error term in LMS
adaptation. Examples include the sign-error algo-
rithm [2], the least-mean fourth (LMF) algorithm
and its family [3], and the least-mean mixed norm
algorithm [4], all of which are intuitively motivated.
Table 1 de�nes f(e(k)) for many famous algo-
rithms. Remember that the nonlinearity f(e(k)) =
sign[e(k)] will not be considered among the nonlin-
earities in the analysis since it does not meet one of

Algorithm f(e(k))

LMS e(k)

NLMS
e(k)

kxkk
2

Sign-LMS sign[e(k)]

LMF e3(k)

Mixed LMS-LMF �e(k) + (1� �)e3(k)

Table 1: Examples for f(e(k)).

the assumptions, namely, the smoothness assump-
tion that will be de�ned later. Also, mentioned in
Table 1 is f(e(k)) = �e(k)+ (1��)e3(k) which is
the error nonlinearity used in the mixed LMS-LMF
algorithm [4]-[5] with � as the mixing parameter.
This algorithm is found to result in better perfor-
mance than either the LMS or the LMF algorithms
in Gaussian and non-Gaussian environments [4]-[5].

In contrast, rigorous variational methods were
used in [6] to optimize the choice of the error-
nonlinearity f . In particular, it was shown that for
a general input

fopt(y) = ��2x
p0(y)

p(y)
; (1)

and for a white Gaussian input

fopt(y) = �
p0e(k)(y)

pe(k)(y) + ��2xp
00

e(k)(y)
; (2)

where p(y) is the pdf of the additive noise and
pe(k)(y) is the pdf of the output error. In this paper,



we employ this variational approach to obtain the
optimum error-nonlinearity for an independent and

identically distributed (iid) input. The nonlinear-
ity arrived at correlates strongly with the optimum
nonlinearities (1) and (2). Moreover, other more fa-
miliar nonlinearities turn out to be approximations
of the derived optimum nonlinearity.

2 Analysis Model and Assumptions

Consider the class of least-mean adaptive algo-
rithms with a general error nonlinearity f . For anal-
ysis purposes, it is more convenient to describe this
class in terms of the weight-error vector vk which
is updated according to

vk+1 = vk + �f(e(k))xk (3)

e(k) = nk � v
T
kxk; (4)

where xk is the input data in the �lter memory
at time k of length L, e(k) is the output error,
and nk is the additive noise. The performance of
an algorithm of this class is mainly determined by

the mean-square behavior of vk, i.e., by E
h
v
T
k vk

i
.

Thus, a successful formulation of the optimiza-
tion problem hinges on obtaining a recursion for

�k = E
h
v
T
k vk

i
that applies for a general error

nonlinearity. This in turn motivates the following
assumptions which are quite similar to what is usu-
ally assumed in literature and which can also be
justi�ed in several practical instances:

A1 The input xk is a zero-mean iid process.

A2 The noise nk is a zero-mean iid process with a
symmetric pdf p(y), and is independent of the
input process.

A3 The error nonlinearity f is odd-symmetric and
su�ciently smooth.

A4 The step size is small enough for the indepen-
dence assumption to be valid.

A5 The excess error E

��
v
T
kxk

�2�
is small enough

for f(e(k)) to be approximated by a 2nd-order
Taylor series about the noise sample nk, i.e.,

f(e(k)) = f
�
nk � v

T
kxk

�

' f(nk)� f 0(nk)
�
v
T
kxk

�

+
1

2
f 00(nk)

�
v
T
kxk

�2
:

While assumptions A1-A3 can be justi�ed in
several practical instances, assumptions A4 and
A5 can only be attained asymptotically. Many au-
thors have made assumptions similar to A2 and
A3 whether studying a general or a speci�c error
nonlinearity. The popularity of the two assumptions
can be understood by noting that they imply

E [f(nk)] = E
�
f 00(nk)

�
= 0; (5)

which makes it easier to carry out convergence anal-
ysis.

Assumptions A2-A5 were used in [6] to charac-
terize the performance of (3)-(4) and subsequently
obtain the optimum error nonlinearity for an arbi-

trary input xk. Assumption A1 was also employed
in [7] to more accurately study the convergence and
performance of (3)-(4).

To formulate the optimization problem, we need
only focus on the the second order behavior of vk
as re
ected by �k = E[vTk vk]. As shown in [7]:

�k+1 =
�
1 + ��2E[f 02 + ff 00]

�2�2x�E[f 0]
�
�(k) + �2xLE[f2]; (6)

where
� = mx;4 + (L� 1)�4x (7)

and where the expectations E[f2]; E[f 0]; and
E[f 02 + ff 0] are taken with respect to the noise
nk, �

2
x is the power of the input signal, and mx;4

denotes the fourth order moment of the input sig-
nal.

3 The Optimum Solution

Recursion (6) is of the form

�k+1 = a�k + b; (8)

in which (1 � a) controls the convergence rate of
�(k) and, together with b, determines its steady-
state value given by

� = lim
k!1

�k =
b

1� a
: (9)



Interestingly, Bershad in [8] arrived at a recursion
that has the same form as (9) when f is the data

rather than the error nonlinearity. He de�ned the
optimum error nonlinearity as that which guaran-
tees fastest transient behavior for a �xed steady
state value. Instead, we choose the optimum non-
linearity as that which minimizes � for a �xed
steady-state behavior. This can be done by min-
imizing b for a �xed value of (1� a), i.e.,

min
f

Z
1

�1

f2(y)p(y)dy (10)

subject to

Z
1

�1

h
��(f 02(y) +f(y)f 00(y))

� 2�2xf
0(y)

i
p(y)dy = C: (11)

To solve for the optimum nonlinearity, we resort to
the calculus of variations. Thus, as demonstrated
in the Appendix, the optimum nonlinearity is given
by

fopt(y) = �
2�2x
p

0(y)

2p(y) + �
�p00(y)
; (12)

where 
 is a Lagrange multiplier associated with
the constraint (11). To determine 
, we can sub-
stitute (12) into (11) and subsequently solve for 
.
A simpler approach though follows by substituting
fopt into the adaptation equation (3) (see [6]). No-
tice then that 
 and the step size � always appear
multiplied by each other. Thus, 
 can be absorbed
into the design parameter � and the optimum non-
linearity becomes e�ectively

fopt(y) = �
�2xp

0(y)

p(y) + ��
2 p

00(y)
: (13)

Remarks

1. Note that for small values of �, fopt can be
approximated as

fopt(y) = ��2x
p0(y)

p(y)
; (14)

which is the same as the optimum error-
nonlinearity (1) obtained in [6] for an arbitrary
input.

2. If the input xk is further restricted to be Gaus-
sian, then mx;4 = 3�4x and the nonlinearity
reads

fopt(y) = �
�2xp

0(y)

p(y) + ��4x
L+2
2 p00(y)

: (15)

Upon replacing ��2
x
(L+2)
2 by �, and by noting

that for large k, e(k) ' nk [3], [6] so that
p(y) ' pe(k)(y), fopt becomes

fopt(y) ' ��2x
p0e(k)(y)

pe(k)(y) + ��2xp
00

e(k)(y)
: (16)

This is the optimum nonlinearity (2) (up to a
scalar multiple) developed in [6] by a condi-
tional analysis approach.

3. The optimum nonlinearity (13) can also be re-
lated to more familiar nonlinearities. This can
be shown, as demonstrated in [9], by approxi-
mating the pdf p(y) in (13) by a Gram-Charlier
series. As a result, fopt reads approximately

fopt(y) ' c1y + c3y
3 + c5y

5 + c7y
7; (17)

where the ci's are a function of the noise mo-
ments. Thus, the error (non)linearities in such
algorithms as the LMS, the LMF algorithm and
its family [3], and the mixed norm algorithm
[4] are simply approximations of the optimum
nonlinearity fopt. This justi�es the use of these
algorithms.

4. The optimum nonlinearity (13) is di�cult to
implement because the pdf p(y) is usually un-
known or time varying. The approximation
(17) does away with this problem by trading
pdf estimation for the estimation of the ci's.
This in turn is easier to carry out as the ci's
can be explicitly expressed in terms of the noise
moments (see [9]).

4 Conclusion

In this paper, the class of LMS algorithms with
a general error nonlinearity was considered. The
optimum error nonlinearity for an iid input was de-
rived. The simplifying iid assumption made it pos-
sible to arrive at a more accurate description of the



nonlinearity. As a result, the optimum nonlinearity
subsumes two recently developed optimum nonlin-
earities. Moreover, the LMS algorithm and several
of its error-modi�ed variants employ nonlinearities
that are actually approximations of the optimum
nonlinearity. Thus, the optimum nonlinearity rep-
resents a unifying view of error nonlinearities (opti-
mum or otherwise) in LMS adaptation.

Appendix

Here we solve the variational problem (10)-(11).
The associated composite functional is

 (y; f; f 0; f 00) = 

h
��

�
f(y)f 00(y) + f 02(y)

�

� 2 �2xf
0(y)

i
p(y) + f2(y)p(y); (18)

where 
 is a Lagrange multiplier corresponding to
the constraint (11). The desired nonlinearity is ob-
tained by solving the the following Euler-Lagrange
di�erential equation

�
d2 f 00

dy2
+
d f 0

dy
�  f = 0: (19)

By di�erentiating (18), we get

 f = �
�f 00(y)p(y) + 2f(y)p(y);

 f 0 = 2�
�f 0(y)p(y)� 2
�2xp(y);

d f 0

dy
= 2�
�

�
f 00(y)p(y) + f 0(y)p0(y)

�
� 2
�2xp(y);

 f 00 = �
�f(y)p(y);

d f 00

dy
= �
�

�
f 0(y)p(y) + f(y)p0(y)

�
;

d2 f 00

dy2
= �
�

�
f 00(y) + 2f 0(y)p0(y) + f(y)p00(y)

�
;

and upon substituting the relevant terms into (19)
we obtain�

2p(y) + �
�p00(y)
�
f(y) + 2
�2xp

0(y) = 0: (20)

Solving for f(y), we obtain the optimum nonlinear-
ity

fopt(y) = �
2
�2xp

0(y)

2p(y) + �
�p00(y)
: (21)
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