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This paper develops a unified approach to the analysis and design of adaptive filters with error nonlinearities. In particular, the
paper performs stability and steady-state analysis of this class of filters under weaker conditions than what is usually encountered
in the literature, and without imposing any restriction on the color or statistics of the input. The analysis results are subsequently
used to derive an expression for the optimum nonlinearity, which turns out to be a function of the probability density function of
the estimation error. Some common nonlinearities are shown to be approximations to the optimum nonlinearity. The framework
pursued here is based on energy conservation arguments.
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1. INTRODUCTION

The least-mean-squares (LMS) algorithm is a popular adap-
tive algorithm because of its simplicity and robustness [1, 2].
Many LMS-like algorithms have been suggested and analyzed
in the literature with the aim of retaining the desirable prop-
erties of LMS and simultaneously offsetting some of its lim-
itations. Of particular importance is the class of least-mean-
squares algorithms with error nonlinearities. Table 1 lists ex-
amples from this class of algorithms for real-valued data.

Table 1: Examples of f[e(i)].

Algorithm Error nonlinearity f[e(i)]

LMS e(i)

LMF e3(i)

LMF family e2k+1(i), k ≥ 0

LMMN ae(i)+ be3(i)

Sign error sign[e(i)]

Saturation ∫ e(i)
0

exp
(
− z2

2σ 2
z

)
dz

nonlinearity

Despite the favorable behavior of many of these LMS vari-
ants, their choice and design are mostly justified by intuition
rather than by rigorous theoretical arguments. Even the LMS
algorithm, which has long been considered as an approximate
solution to a least-mean-squares problem, has only recently
been justified by a rigorous theory [3].

In this paper, we provide a unifying framework for the
mean-square performance of adaptive filters that involve er-
ror nonlinearities in their update equations. We will use this
analysis to design adaptive algorithms with optimized perfor-
mance. Before discussing the features of the approach pro-
posed herein and its contributions, we provide, as a moti-
vation, a summary of selected studies dealing with adaptive
filters with error nonlinearities. These studies can be classified
into two categories.

I. Analysis using simplifying assumptions

Since adaptive algorithms with error nonlinearities are
among the most difficult to analyze, it is not uncommon to
resort to different methods and assumptions with the intent
of performing tractable analysis. This includes:

Linearization: here the error nonlinearity is linearized
around an operating point and higher-order terms are dis-
carded as in [4, 5, 6, 7, 8]. Analyses that are based on
this technique fail to accurately describe the adaptive filter
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performance for large values of the error, for example, at
early stages of adaptation. Linearization can be avoided by
focusing on a specific nonlinearity (e.g., as in the sign algo-
rithm [9]) or a subclass of nonlinearities (e.g., as in the case
of the error saturation algorithm [10, 11]).

Restricting the class of input signals: such as assuming the
input to be white and/or Gaussian (e.g., [5, 6, 9, 10, 11, 12, 13,
14, 15, 16]).

Independence assumption: it is very common to assume
that successive regression vectors are independent.

Assumptions on the statistics of the error signal: while sta-
tistical assumptions are usually imposed on the regression
and noise sequences, it is also common to impose statistical
conditions on error quantities. For example, in studying the
sign-LMS algorithm, it was assumed in [17] that the elements
of the weight-error vector are jointly Gaussian. More accurate
is the assumption that the residual error is Gaussian, which
was adopted in [6, 9, 10, 11]. By central limit arguments, this
assumption is justified for long adaptive filters. More impor-
tantly, the assumption is as valid in the early stages as in the
final stages of adaptation.

Assuming Gaussian noise: noise is sometimes restricted to
be i.i.d Gaussian as in [6, 9, 17, 18], although Gaussianity is
not as common as the previous assumptions.

Most studies of adaptive algorithms with error nonlin-
earities rely on a selection from the above array of assump-
tions/techniques.

II. Optimal designs [8, 19, 20, 21]

Here one attempts to construct adaptive algorithms with op-
timum nonlinearities. A natural prerequisite is to evaluate
some measures of performance (e.g., [6, 7, 16, 22]) and then
minimize them to arrive at optimum choices for the non-
linearity [8, 19, 20, 21]. The difficulty, of course, is that the
analysis is often plagued by the aforementioned assumptions
and techniques. The result is that the optimum nonlinearities
obtained are not any more valid than the restrictions imposed
by the analysis.

1.1. The approach of this paper

In this paper, we address some of the above concerns. In par-
ticular, we present a unified approach to the mean-square
analysis of adaptive algorithms with general error nonlinear-
ities. The approach relies on energy conservation arguments
and applies under weaker assumptions than what is available
in the literature. Our performance results are subsequently
optimized to obtain an expression for the optimum nonlin-
earity. In what follows, we list the contributions of the paper.
This also serves as a layout for its organization.

(1) After introducing our notation, we set up the stage in
the next section by defining the adaptive filtering problem.
We also derive an energy relation that will be the starting
point for much of the subsequent analysis.

(2) The energy relation is used in Section 3 to study
mean-square stability. In particular, without relying on any
independence-like assumptions, we derive bounds on the
step-size for stability.

(3) Section 4 is devoted to studying the steady-state
behavior, where we show that the mean-square error can be
obtained as the fixed point of a nonlinear equation. The sta-
bility and steady-state analysis apply under weaker conditions
than usual, and these conditions become reasonably accurate
for long adaptive filters.

(4) The steady-state results are used in Section 5 to ob-
tain an expression for the optimum nonlinearity, which is
valid for all stages of adaptation. The nonlinearity turns out
to be a function of the noise probability density function
(pdf). We show how the nonlinearity manifests itself for dif-
ferent noise distributions and how it relates to more common
nonlinearities.

1.2. Notation

We focus on real-valued data, although the extension to
complex-valued data is immediate. Small boldface letters are
used to denote vectors, for example, w. Also, the symbol
T denotes transposition. The notation ‖w‖2 stands for the
squared Euclidean norm of a vector, ‖w‖2 = wTw. All vec-
tors are column vectors except for a single vector, namely the
input data vector ui, which is taken to be a row vector. The
time instant is placed as a subscript for vectors (e.g., wi) and
between parentheses for scalars (e.g., e(i)).

2. ADAPTIVE ALGORITHMS WITH ERROR
NONLINEARITIES

An adaptive filter attempts to identify a weight vector wo by
using a sequence of input (row) regressors {ui} and output
samples {d(i)} that are related via

d(i) = uiw
o + v(i). (1)

Here v(i) accounts for measurement noise and modeling
errors. Many adaptive schemes have been proposed in the
literature for this purpose (cf. [1, 2]). In this paper, we focus
on the class of algorithms

wi+1 = wi + µf[e(i)]uTi , i ≥ 0, (2)

where wi is the estimate of w at time i, µ is the step size,

e(i) � d(i)− uiwi = uiw
o − uiwi + v(i) (3)

is the estimation error, and f[e(i)] is a scalar function of the
error e(i). Table 1 lists some common adaptive algorithms
and their corresponding error nonlinearities.

Mean-square analysis of adaptive filters is best carried out
in terms of the weight-error vector

w̃i = wo −wi (4)

and the a priori and a posteriori errors defined by

ea(i) � uiw̃i, ep(i) � uiw̃i+1. (5)

We can use these quantities to rewrite the adaptation equation



194 EURASIP Journal on Applied Signal Processing

(2) as

w̃i+1 = w̃i − µf[e(i)]uTi . (6)

Moreover, by combining the defining expressions (3) and (5),
we obtain

e(i) = ea(i)+ v(i). (7)

A relation between the estimation errors ea(i), ep(i), and
e(i) can be obtained by pre-multiplying both sides of the
adaptation equation (6) by ui,

uiw̃i+1 = uiw̃i − µf[e(i)]
∥∥ui

∥∥2 (8)

and incorporating the defining expressions (5), which yields

ep(i) = ea(i)− µ
∥∥ui

∥∥2f[e(i)]. (9)

2.1. An energy conservation relation

To motivate the subsequent analysis, it is worth listing first the
questions that are usually of interest in an adaptive filtering
setting. We are often interested in questions related to

Steady-state behavior: which relates to determining the
steady-state values of E[‖w̃i‖2], E[e2

a(i)], and/or E[e2
p(i)].

Stability: which relates to determining the range of val-
ues of the step-size for which the variances E[e2

a(i)] and
E[‖w̃i‖2] remain bounded.

Learning curves: which relates to determining the time
evolution of the curves E[e2

a(i)] and E[‖w̃i‖2].
Observe that the above questions are all conveniently

phrased in terms of the error quantities {ea(i), ep(i), w̃i}
or, more accurately, in terms of their energies. This fact mo-
tivates us to pursue an energy-based approach.

More specifically, in order to address questions of this
kind,we will rely on an energy equality that relates the squared
norms of the error quantities {ea(i), ep(i), w̃i, w̃i+1}. To de-
rive the energy relation, we combine (6) and (9) so as to
eliminate the nonlinearity f[e(i)]:

w̃i+1 = w̃i −
(
ea(i)− ep(i)

) uTi∥∥ui
∥∥2 . (10)

We then square both sides to get

∥∥w̃i+1
∥∥2 =

(
w̃i −

(
ea(i)− ep(i)

) uTi∥∥ui
∥∥2

)T

×
(

w̃i −
(
ea(i)− ep(i)

) uTi∥∥ui
∥∥2

)
.

(11)

This yields, after some straightforward manipulations, the
energy relation

∥∥w̃i+1
∥∥2 +

∣∣ea(i)∣∣2∥∥ui
∥∥2 =

∥∥w̃i
∥∥2 +

∣∣ep(i)∣∣2

∥∥ui
∥∥2 . (12)

This result is exact for any adaptive algorithm described by
(2); no approximations whatsoever were used. It has proven

very useful in the study of the performance of adaptive filters,
in both deterministic and stochastic analysis. The relation
was originally derived in [23, 24, 25] and used in the context
of robustness analysis of adaptive filters; it was later used
in [26, 27, 28, 29, 30, 31] in the context of steady-state and
transient analysis of adaptive filters.

Since we are interested in the mean-square behavior of
adaptive filters, we take expectations of both sides of (12) and
write

E
[∥∥w̃i+1

∥∥2
]
+ E

[∣∣ea(i)∣∣2∥∥ui
∥∥2

]

= E
[∥∥w̃i

∥∥∥2]
+ E

[∣∣ep(i)∣∣2

∥∥ui
∥∥2

] (13)

or, upon replacing the a posteriori error ep(i) by the equiva-
lent expression (9),

E
[∥∥w̃i+1

∥∥2
]
= E

[∥∥w̃i
∥∥2
]
− 2µE

[
ea(i)f [e(i)]

]

+ µ2E
[∥∥ui

∥∥2f 2[e(i)]
]
.

(14)

This averaged form of the energy relation is the starting
point of our analysis. In the course of answering the adaptive
filtering questions, we will not attempt to develop (14) into
a self-contained recursion as is usually done in literature.
Rather, our efforts will be centered around manipulating the
two expectations that appear on the right-hand side of (14)
by imposing as little assumptions as necessary to answer the
adaptive filtering question under consideration. In particular,
the following two assumptions will be used throughout our
analysis:

(AN) The noise sequence {v(i)} is independent, iden-
tically distributed, and independent of the input sequence
{ui}.

(AG) The filter is long enough such that ea(i) is Gaussian.
The independence assumption on the noise is valid in

many practical situations. Notice, however, that we make no
assumption on the noise statistics which is contrary to the
Gaussian restriction that is sometimes imposed in literature
(e.g., [6, 9, 17, 18]).

Assumption (AG) is justified for long filters by the central
limit theorem. As such, the validity of the assumption is de-
pendent on the filter order M . Nevertheless, the assumption
remains as valid in the initial stages of adaptation as it is in
the final stages. This comes contrary to the linearization ar-
guments that are usually employed when dealing with error
nonlinearities and which are only valid in the final stages of
adaptation (see [6, 7, 8]). By expressing the two expectations
in (14) in terms of the second-order moment E[e2

a(i)], we
basically bypass the need for linearization.

3. MEAN-SQUARE STABILITY

Stability is usually studied in literature by first developing (14)
into a self-contained recursion and subsequently determining
conditions on the step-size in order to guarantee the stability
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of the recursion. As we will now see, we can study stability
directly from (14) thus doing away with the self-contained re-
cursion and with any auxiliary assumptions that are invoked
to develop this recursion. In particular, starting from (14), we
pursue a Lyapunov approach to stability where we provide
a nontrivial upper bound on µ for which E[‖w̃i‖2] remains
uniformly bounded for all i. More specifically, we will show
how to calculate a bound µ0 for which

µ ≤ µo =⇒ E
[∥∥wi

∥∥2
]
≤ C <∞ (15)

for some constant C.

3.1. A monotone sequence of weight energies

Starting from (14), it is easy to see that

E
[∥∥w̃i+1

∥∥2
]
≤ E

[∥∥w̃i
∥∥2
]

⇐⇒ −2µE
[
ea(i)f [e(i)]

]
+ µ2E

[∥∥ui
∥∥2f 2[e(i)]

]
≤ 0.

(16)

Thus, if we choose µ such that for all i

µ ≤ 2
E
[
ea(i)f [e(i)]

]
E
[∥∥ui

∥∥2f 2[e(i)]
] , (17)

then the sequence {E[‖w̃i‖2]} will be decreasing and (being
bounded from below) also convergent. Alternatively, a suffi-
cient condition for stability would be

µ ≤ 2 inf
i≥0

E
[
ea(i)f [e(i)]

]
E
[∥∥ui

∥∥4
]1/2

E
[
f 4[e(i)]

]1/2 , (18)

where we appealed to the Cauchy-Schwartz inequality to
bound the denominator by

E
[∥∥ui

∥∥2f 2[e(i)]
]
≤ E

[∥∥ui
∥∥4
]1/2

E
[
f 4[e(i)]

]1/2. (19)

To proceed further, the convenience of the Gaussian assump-
tion on ea(i) can be brought into fruit to evaluate the expec-
tations in (18). In particular, the expectations can be written
as functions of the second moment1 E[e2

a(i)]. This prompts

1Since ea(i) is assumed Gaussian and independent of v(i), we can, for
example, write

E
[
f 4[ea(i)+ v(i)]] =

∫∞
−∞

∫∞
−∞
f 4[ea(i)+ v(i)] 1√

2πE
[
e2
a(i)

]
× e−e2

a(i)/2E[e2
a(i)]pv(v)dea(i)dv

=
∫∞
−∞
pv(v)dv

∫∞
−∞
f 4[ea(i)+ v(i)] 1√

2πE
[
e2
a(i)

]
× e−e2

a(i)/2E[e2
a(i)]dea(i).

The inner integral depends on e2
a(i) through E[e2

a(i)] only and, hence, so
does E[f 4[ea(i)+ v(i)]].

us to define2

hG
[
E
[
e2
a(i)

]]
� E

[
ea(i)f [e(i)]

]
E
[
e2
a(i)

] , (20)

hC
[
E
[
e2
a(i)

]]
� E

[
f 4(e(i))]. (21)

For future reference, hG is tabulated in Table 2 for the error
nonlinearities of Table 1.

Upon substituting (20) and (21) into (18), we see that a
sufficient condition for convergence is that

µ ≤ 2[
E
∥∥u4

i
∥∥]1/2

(
inf
i≥0

E
[
e2
a(i)

] · hG[E[e2
a(i)

]]
√
hC
[
E
[
e2
a(i)

]]
)
, (22)

where we moved the expectation E[‖ui‖4] outside the mini-
mization since the input data is assumed stationary. Observe
now that all terms in the above minimization are functions
of E[e2

a(i)]. We can therefore rewrite (22) as

µ ≤ 2

E
[∥∥u4

i
∥∥]1/2

(
inf

E[e2
a(i)]

E
[
e2
a(i)

] · hG[E[e2
a(i)

]]
√
hC
[
E
[
e2
a(i)

]]
)
. (23)

We emphasize that the minimization takes place over the pos-
sible values of E[e2

a(i)] only; these values are not arbitrary
but correspond to those assumed by the learning curve of the
adaptive filter. As it stands, the bound (23) is still not useful,
and we need to replace it by a time-independent bound.

3.1.1 Removing the time index (dependence)

We can replace the range of feasible values of E[e2
a(i)] by the

larger set

Ω = {E[e2
a
]

: 0 ≤ E[e2
a
]
<∞}. (24)

Minimization overΩ is easier to carry out and we additionally
have

inf
E[e2

a]∈Ω

(
E
[
e2
a
] · hG[E[e2

a
]]

√
hC
[
E
[
e2
a
]]

)

≤ inf
E[e2

a(i)]

(
E
[
e2
a(i)

] · hG[E[e2
a(i)

]]
√
hC
[
E
[
e2
a(i)

]]
)
.

(25)

Almost always, however, minimization over Ω yields a null
value and hence is useless. A more intelligent choice of the
feasible set is thus called for.

3.1.2 A lower bound on E[e2
a(i)]

A nonzero lower bound on E[e2
a(i)] can be obtained by

noting that E[e2
a(i)] cannot be lower than the Cramer-Rao

bound λ associated with the underlying estimation process,
that is, the problem of estimating the random quantity uiwo

2The subscript in hG points to the fact that the Gaussian assumption
(AG) is the major assumption in evaluating E[ea(i)f [e(i)]]. The subscript
in hC is a reminder that the Cauchy-Schwartz inequality is the key step in
approximating E[‖ui‖2f 2[ea(i)+ v(i)]].
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Table 2: hG[·] for the error nonlinearities of Table 1 (σ 2
ea � E[e2

a(i)]).

Algorithm hG
[
σ 2
ea
]

(with v(i) Gaussian) hG
[
σ 2
ea
]

LMS 1 1

LMF 3
(
σ 2
ea + σ 2

v
)

3
(
σ 2
ea + σ 2

v
)

LMF family
(2k+ 2)!

2k+1(k+ 1)!
(
σ 2
ea + σ 2

v
)k ∑k

j=0

(
2k+1
j

)
σ 2j
ea E

[
v2(k−j)(i)

]

LMMN a+ 3bσ 2
v + 3bσ 2

ea a+ 3bσ 2
v + 3bσ 2

ea

Sign error

√
2
π

1√
σ 2
ea + σ 2

v

√
2
π
σeaE

[
e−v

2(i)/2σ 2
ea
]

Sat. nonlin.
σz√

σ 2
ea + σ 2

v + σ 2
z

σz√
σ 2
ea + σ 2

z
E
[
e−v

2(i)/2(σ 2
ea+σ 2

z )
]

by using uiwi (see [32, page 72]). Thus, we can write

E
[
e2
a(i)

] ≥ λ (26)

and subsequently replace Ω with the smaller set

Ω′ = {E[e2
a
]

: λ ≤ E[e2
a
]}
. (27)

This results in the tighter bound

µ ≤ 2[
E
∥∥ui

∥∥4
]1/2

(
inf

E[e2
a]∈Ω′

E
[
e2
a
] · hG[E[e2

a
]]

√
hC
[
E
[
e2
a
]]

)
. (28)

3.1.3 An upper bound on E[e2
a(i)]

It turns out that for adaptive filters that employ a linear or
sublinear error nonlinearities (e.g., the LMS and the sign algo-
rithms), the feasible setΩ′ defined by (27) is good enough (as
we will show in the examples further ahead). In other words,
the set is small enough to produce a positive upper bound on
the step size for stability. In other cases, for example, the LMF
algorithm and its family, we need a more compact set and an
upper bound on E[e2

a(i)] is also necessary. Not surprisingly
perhaps, the upper bound depends on the initial condition of
the adaptive filter.

To this end, observe that since ea(i) is Gaussian, by as-
sumption, it satisfies

E
[
e2
a(i)

] = 1
4

(
E
[∣∣ea(i)∣∣])2

= 1
4

(
E
[∣∣uiw̃i

∣∣])2

≤ 1
4

(
E
[∥∥ui

∥∥∥∥w̃i
∥∥])2,

(29)

where the last line follows from the Cauchy-Schwartz inequal-
ity. To proceed further, we apply the same inequality to the
expectation operator this time, splitting it as

E
[
e2
a(i)

] ≤ 1
4

([
E
∥∥ui

∥∥2
]1/2[

E
∥∥w̃i

∥∥2
]1/2)2

= 1
4
E
[∥∥ui

∥∥2
]
E
[∥∥w̃i

∥∥2
]

= 1
4

Tr(R)E
[∥∥w̃i

∥∥2
]
.

(30)

Here R denotes the covariance matrix of the regression vec-
tor ui. Now since the bounds (18) or (23) on µ ensure that
E[‖w̃i‖2] is decreasing, we have

E
[∥∥w̃i

∥∥2
]
≤ E

[∥∥w̃0
∥∥2
]
. (31)

This gives us the desired upper bound

E
[
e2
a(i)

] ≤ 1
4

Tr(R)E
[∥∥w̃0

∥∥2
]
. (32)

The two bounds (26) and (32) produce the alternative feasi-
bility set

Ω′′ =
{
E
[
e2
a
]

: λ ≤ E[e2
a
] ≤ 1

4
Tr(R)E

[∥∥w̃0
∥∥2
]}

(33)

which leads to the following conclusion.

Theorem 1 (stability). Consider an adaptive filter of the form

wi+1 = wi + µuTi f [e(i)], i ≥ 0, (34)

where e(i) = d(i)−uiwi and d(i) = uiwo+v(i). Assume the
noise sequence v(i) is i.i.d and independent of ui, and that the
filter is long enough so that ea(i) = ui(wo −wi) is Gaussian.
Then sufficient conditions for stability are

µ ≤ 2[
E
∥∥ui

∥∥4
]1/2

(
inf

E[e2
a]∈Ω′

E
[
e2
a
] · hG[E[e2

a
]]

√
hC
[
E
[
e2
a
]]

)
(35)
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or

µ ≤ 2[
E
∥∥ui

∥∥4
]1/2

(
inf

E[e2
a]∈Ω′′

E
[
e2
a
] · hG[E[e2

a
]]

√
hC
[
E
[
e2
a
]]

)
, (36)

where

Ω′ =
{
E
[
e2
a
]

: λ ≤ E[e2
a
]}
,

Ω′′ =
{
E
[
e2
a
]

: λ ≤ E[e2
a
] ≤ 1

4
Tr(R)E

[∥∥w̃0
∥∥2
]} (37)

and λ is the Cramer-Rao bound associated with the problem of
estimating the random quantity uiwo by using uiwi.

As indicated earlier, the bound (35) will be zero for su-
perlinear functions f[·] (e.g., LMF and LMMN), in which
case the tighter bound (36) will be more useful. Notice also
that the above bounds are derived without relying on any
independence-like assumptions.

3.2. Examples: explicit bounds on µ for stability

3.2.1 The LMS algorithm

Instead of applying Theorem 1, we can in the LMS case be
more specific. Thus starting from (17), we obtain

µ ≤ 2 inf
E[e2

a(i)]

E
[
ea(i)e(i)

]
E
[∥∥ui

∥∥2e2(i)
]

= 2 inf
E[e2

a(i)]

E
[
e2
a(i)

]
E
[∥∥ui

∥∥2e2
a(i)

]
+ σ2

vE
[∥∥ui

∥∥2
]

≤ 2 inf
E[e2

a(i)]

E
[
e2
a(i)

]
[
E
∥∥ui

∥∥4
]1/2

E
[
e4
a(i)

]1/2 + σ2
vE
[∥∥ui

∥∥2
]

= 2 inf
E[e2

a(i)]

E
[
e2
a(i)

]
√

3
[
E
∥∥ui

∥∥4
]1/2

E
[
e2
a(i)

]+ σ2
vE
[∥∥ui

∥∥2
] ,

(38)

where the last line follows from the Gaussian assumption
(AG). By performing the minimization over Ω′, we obtain
the tighter bound

µ ≤ 2 inf
E[e2

a(i)]≥λ

E
[
e2
a(i)

]
√

3
[
E
∥∥ui

∥∥4
]1/2

E
[
e2
a(i)

]+ σ2
vE
[∥∥ui

∥∥2
]

= 2λ
√

3
[
E
∥∥ui

∥∥4
]1/2

λ+ σ2
vE
[∥∥ui

∥∥2
] .

(39)

For binary inputs, stability of the LMS algorithm can be
established even without the Gaussian assumption (AG). For
then, ‖ui‖2 = M and stability is guaranteed if

µ ≤ 2 inf
E[e2

a(i)]

E
[
ea(i)e(i)

]
E
[∥∥ui

∥∥2e2(i)
] = 2

M
inf

E[e2
a(i)]

E
[
e2
a(i)

]
E
[
e2
a(i)

]+ σ2
v

≤ 2
M

inf
E[e2

a]≥λ

E
[
e2
a
]

E
[
e2
a
]+ σ2

v
= 2
M

λ
λ+ σ2

v
.

(40)

3.2.2 The sign algorithm
For the sign algorithm, the bound (35) reads

µ ≤ 2[
E
∥∥ui

∥∥4
]1/2 inf

E[e2
a]≥λ

√
2
π
(
E
[
e2
a
])3/2E

[
e−v

2(i)/2E[e2
a]
]

=
√

8
π

λ3/2[
E
∥∥ui

∥∥4
]1/2 E

[
e−v

2(i)/2λ].
(41)

3.2.3 The LMF algorithm
For the LMF algorithm, we employ the tighter bound (36)

µ ≤ 2[
E
∥∥ui

∥∥4
]1/2 inf

E[e2
a(i)]∈Ω′′

E
[
e2
a(i)

] · hG[E[e2
a(i)

]]
√
hC
[
E
[
e2
a(i)

]] (42)

= 2[
E
∥∥ui

∥∥4
]1/2 inf

E[e2
a(i)]∈Ω′′

3E
[
e2
a(i)

](
E
[
e2
a(i)

]+ σ2
v
)

E
[
e12(i)

]1/2 .

(43)

Using the Gaussian assumption, it is easy to evaluate the ex-
pectation E[e12(i)], and subsequently carry out the mini-
mization in (43). However, this is not necessary for all what
we need is to make sure that the bound in (43) is positive.
Since E[e2

a]hG/
√
hC is strictly positive over Ω′′ and since Ω′′

is compact, we conclude that

inf
E[e2

a]∈Ω′′
E
[
e2
a
] · hG(E[e2

a
])

√
hC
(
E
[
e2
a
]) > 0. (44)

For design purposes, we could determine the infimum of
E[e2

a]hG/
√
hC overΩ′′. Here we are interested in the simpler

task of establishing stability.

Remark. Linearization was employed in [4] to prove the sta-
bility of the LMF algorithm. While this might be reasonable
for steady-state analysis, it need not be valid when stability is
concerned. Notice that no linearization arguments were used
here. Observe also that for the LMF algorithm, the infimum
of E[e2

a]hG/
√
hC over Ω′ is zero. That explains why we had

to perform minimization over the smaller set Ω′′, which is
initial-condition dependent. This suggests that the perfor-
mance of the LMF is initial-condition dependent too, as is
often confirmed by simulation. In general, this is expected to
be the case for algorithms employing super-nonlinearities.

4. STEADY-STATE BEHAVIOR

To investigate the steady-state behavior, we again start from
the averaged energy relation (14). Assuming that the filter is
stable, it should attain a steady-state where it holds that

lim
i→∞

E
[∥∥w̃i+1

∥∥2
]
= lim
i→∞

E
[∥∥w̃i

∥∥2
]
. (45)

Therefore, (14) becomes in steady-state

lim
i→∞

E
[
ea(i)f [e(i)]

] = µ
2

lim
i→∞

E
[∥∥ui

∥∥2f 2[e(i)]
]
. (46)
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Both of the expectations in (46) were dealt with as part of the
stability analysis. Using the Gaussian assumption, we have
already argued that E[ea(i)f [e(i)]] can be written as a func-
tion of E[e2

a(i)]. In particular, from (20) we have

E
[
ea(i)f [e(i)]

] = E[e2
a(i)

]
hG
[
E
[
e2
a(i)

]]
, (47)

where the function hG was tabulated in Table 2 for the non-
linearities in Table 1.

In a similar fashion, we now proceed to evaluate
E[‖ui‖2f 2[e(i)]] in terms of E[e2

a] (rather than bound it
as in the stability analysis). This prompts us to introduce the
following “asymptotic” assumption:

(AU) The random variables ‖ui‖2 and f 2[e(i)] are
asymptotically uncorrelated, that is,

lim
i→∞

E
[∥∥ui

∥∥2f 2[e(i)]
]
= E

[∥∥ui
∥∥2
]

lim
i→∞

E
[
f 2[e(i)]

]
. (48)

Assumption (AU) has the same spirit as the independence
assumption3 but it is weaker. For one thing, relation (48) is
exact for constant modulus inputs while the independence
assumption is not. Moreover, the separation property (48)
need only be satisfied asymptotically. Fortunately, assump-
tion (AU) acts in harmony with the Gaussianity assumption
on ea(i) in that it also becomes more realistic as the filter
gets longer. For then, by an ergodic argument, ‖ui‖2 behaves
like the second moment of the input (scaled by the filter
length M).

To proceed, we use the Gaussian assumption (AG) on
ea(i) to express the expectation E[f 2[e(i)]] as a function
of the second-order moment E[e2

a(i)], which motivates the
definition

hU
[
E
[
e2
a(i)

]]
� E

[
f 2[e(i)]

]
. (49)

The function hU is tabulated in Table 3 for the nonlinearities
of Table 1.

This definition, together with (48), yields

lim
i→∞

E
[∥∥ui

∥∥2f 2[e(i)]
]
= E

[∥∥ui
∥∥2
]

lim
i→∞

hU
[
E
[
e2
a(i)

]]

= Tr(R) lim
i→∞

hU
[
E
[
e2
a(i)

]]
.

(50)

Upon substituting (47) and (50) into (46), we obtain

lim
i→∞

E
[
e2
a(i)

]
� µ

2
Tr(R)

limi→∞ hU
[
E
[
e2
a(i)

]]
limi→∞ hG

[
E
[
e2
a(i)

]] . (51)

Now denote the steady-state mean-square error by

S � lim
i→∞

E
[
e2
a(i)

]
. (52)

Then since both hU and hG are analytic in their arguments,

3The independence assumption requires that the input regressors {ui}
form an independent and identically distributed sequence. This assumption
is heavily used in the adaptive filtering literature.

we have

lim
i→∞

hU
[
E
[
e2
a(i)

]] = hU[S],
lim
i→∞

hG
[
E
[
e2
a(i)

]] = hG[S], (53)

so that the MSE is the positive root of the nonlinear equation

S = µ
2

Tr(R)
hU[S]
hG[S]

. (54)

In other words, the MSE is the fixed point of the function
(µ/2)Tr(R)(hU[S]/hG[S]). For a given error nonlinearity
f , we can evaluate hU and hG (as done in Tables 2 and 3) and
subsequently solve for the MSE. Our findings are summarized
in the following theorem.

Theorem 2 (steady-state behavior). Consider the setting of
Theorem 1. Assume further that‖ui‖2 andf 2[e(i)] are asymp-
totically uncorrelated, and that the filter is mean-square stable
with MSE denoted by S. Then the following equality holds:

S = µ
2

Tr(R)
hU[S]
hG[S]

. (55)

To demonstrate the use of this theorem, we provide in what
follows expressions for the mean-square error of some of the
nonlinearities in Table 1.

4.1. Examples: MSE expressions

4.1.1 The LMS algorithm

In the LMS case, (54) reads

S = µ
2

Tr(R)
(
S + σ2

v
)

(56)

or, equivalently,

S = σ2
v
µTr(R)

2− Tr(R)
. (57)

This is a well-known result that was derived in [13] by relying
on the independence assumption. Using the energy-based
approach of this paper, we only need the weaker assumption
(AU), as indicated above and also in [27, 29].4

4.1.2 The sign algorithm

In the case of the sign algorithm, we can show that the MSE
satisfies

S = µ
√
π
8

Tr(R)
√
S

E
[
e−v2(i)/2S

] . (58)

This relation applies irrespective of assumption (AU). We
have only appealed to the Gaussian assumption (AG) in ar-
riving at (58)—see also [28]. The expectation that appears

4This result remains valid irrespective of the Gaussian assumption on
ea(i). The reason is that in the LMS case, the two expectations that appear
in (46) are already quadratic in ea(i)—see [27, 29].
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Table 3: hU[·] for the error nonlinearities of Table 1 (σ 2
ea � E[e2

a(i)]).

Algorithm hU
[
σ 2
ea
]

(v(i) Gaussian) hU
[
σ 2
ea
]

LMS σ 2
ea + σ 2

v σ 2
ea + σ 2

v

LMF 15
(
σ 2
ea + σ 2

v
)3

15σ 6
ea + 45σ 4

eaσ
2
v + 15σ 2

eaE
[
v4(i)

]+ E[v6(i)
]

LMF family
(4k+ 2)!

22k+1(2k+ 1)!
(
σ 2
ea + σ 2

v
)2k+1 ∑2k+1

j=0

(
4k+2

2j

) (2j)!
2jj!

σ 2j
ea E

[
v2(2k−j+1)(i)

]

LMMN

a2
(
σ 2
ea + σ 2

v
)+ 6ab

(
σ 2
ea + σ 2

v
)2

15b2σ 6
ea +

(
45b2σ 2

v + 6ab
)
σ 4
ea

+15b2
(
σ 2
ea + σ 2

v
)3 +(15b2E

[
v4(i)

]+ 12abσ 2
v + a2

)
σ 2
ea

+E[(bv2(i)+ a)2v2(i)
]

Sign error 1 1

Sat. nonlin. σ 2
z sin−1

(
σ 2
ea + σ 2

v

σ 2
ea + σ 2

v + σ 2
z

)
π
2
σ 2
z − 2σ 3

z

∫ 1/
√

2

0

1√
σ 2
ea + σ 2

z (1− x2)
E
[
e−v

2(i)/2(σ 2
ea+σ 2

z (1−x2))]dx

in (58) is carried over the noise pdf. By specifying the noise
statistics, we obtain the following special cases:

S =




α+
√
α+ 4σ2

v

2
Gaussian noise,

α

√
6
π

σv

erf
(√

3σ2
v/2S

) Uniform noise,

α
√
Seσ 2

v /2S Binary noise,

(59)

where α = µ
√
π/8 Tr(R). Each of these equations can be

uniquely solved for the MSE. They were derived in [12] under
the independence assumption and under an i.i.d restriction
on the input, but are rederived here without relying on these
restrictions.

4.1.3 The LMF algorithm

For the LMF algorithm, and with the aid of Tables 1 and 2,
equation (54) takes the form

S = µ
6

15S3 + 45σ2
vS2 + 15mv,4S +mv,6

S + σ2
v

Tr(R), (60)

where mv,4 and mv,6 denote the fourth and sixth moments
of the noise v(i). Finding the MSE is thus equivalent to find-
ing the roots of a third-order equation, which can be done
numerically. We can avoid this in the Gaussian case and ob-
tain a closed formula for the MSE.

Gaussian noise

In the Gaussian noise case, (60) simplifies to

S = 5µ
2

(
S + σ2

v
)3

S + σ2
v

Tr(R) = α
2

(
S + σ2

v
)2, (61)

where α = 5µTr(R). This is a quadratic equation in S with
two positive roots

S =
(
1−ασ2

v
)± √1− 2ασ2

v

α
. (62)

Only the larger root is meaningful.5

Remarks. Although several of the MSE expressions above ap-
peared previously in literature, the advantage of the energy-
based approach of this article is threefold:

(1) All expressions are obtained as a fall out of the same
approach (i.e., by using the same expression (54))—an ap-
proach that avoids the need for a self-contained recursion.

(2) The expressions are either new (e.g., (58), (60), and
(62)) or are otherwise rederived under a more relaxed set of
assumptions (e.g., (57) and (59)).

(3) Here we avoid the need for linearization as in the
LMF example. It seems that calculating the steady-state error
for super nonlinearities (e.g., the LMF and its family) has
always involved some form of linearization arguments (e.g.,
[4, 6, 8, 16]).

5. OPTIMUM CHOICE OF THE NONLINEARITY

In this section, we build upon the second-order analysis per-
formed above to optimize the choice of the error nonlinearity
f . To this end, consider expression (54) for the mean-square
error written in a more explicit form

S = µ
2

Tr(R)
E
[
f 2[e(i)]

]
E
[
ea(i)f [e(i)]

]
/E
[
e2
a(i)

] . (63)

5We can show that the smaller root is O(µ3). It is well known that the
MSE is linearly proportional to the step size, and hence the smaller root can
be ignored.
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We would like to choose a nonlinearity f that minimizes the
mean-square error. If we confine our attention to the class
of smooth nonlinearities, we can write, using the Gaussian
assumption (AG) and Price theorem [11, 33],

E
[
ea(i)f [e(i)]

] = E[ea(i)f [ea(i)+ v(i)]]
= E[ea(i)e(i)]E[f ′(e(i))]
= E[e2

a(i)
]
E
[
f ′[e(i)]

]
.

(64)

Thus, for a smooth error nonlinearity f , the MSE takes the
alternative form

S = µ
2

Tr(R)
E
[
f 2[e(i)]

]
E
[
f ′[e(i)]

] . (65)

The mean-square error cannot be minimized beyond the
limit λ, which corresponds to the Cramer-Rao bound of the
underlying estimation process. We can thus write

E
[
f 2[e(i)]

]
E
[
f ′[e(i)]

] ≥ 2
µTr(R)

λ � α. (66)

Now let pe denote the pdf of e(i). We claim that the nonlin-
earity

f[e(i)] = −αp
′
e[e(i)]
pe[e(i)]

(67)

attains the lower bound on the MSE and hence is optimum.
To see this, we evaluate the numerator and denominator of
(66) for this choice of f . Using integration by parts, we have

E
[
f ′[e(i)]

] =
∫∞
−∞
f ′[e(i)]pe[e(i)]de(i)

= f[e(i)]pe[e(i)]
∣∣∣∞−∞

−
∫∞
−∞
f[e(i)]p′e[e(i)]de(i).

(68)

For the choice (67) of f , this yields

E
[
f ′[e(i)]

] = −αp′e[e(i)]
∣∣∣∞−∞

+α
∫∞
−∞

(
p′e[e(i)]

)2

pe[e(i)]
de(i)

(69)

or, assuming that p′e decays to zero as e(i) approaches ±∞,

E
[
f ′[e(i)]

] = α
∫∞
−∞

(
p′e[e(i)]

)2

pe[e(i)]
de(i). (70)

Now for the same choice of f , we have

E
[
f 2[e(i)]

] = α2
∫∞
−∞

(
p′e[e(i)]
pe[e(i)]

)2

pe[e(i)]de(i) (71)

= α2
∫∞
−∞

(
p′e[e(i)]

)2

pe[e(i)]
de(i). (72)

We thus conclude that

E
[
f 2[e(i)]

]
E
[
f ′[e(i)]

] = α. (73)

In other words, the nonlinearity (67) ensures that the MSE
approaches the minimum limit determined by the Cramer-
Rao bound.

5.1. Removing the constantα

The optimum nonlinearity is specified up to the constant
α = 2λ/µTr(R). It turns out that we can use this nonlinearity
without calculating α. To see this, we examine the adaptation
equation (6) with the optimum choice (67) of f :

w̃i+1 = w̃i − µ
(
−αp

′
e[e(i)]
pe[e(i)]

)
ui. (74)

Since the step size µ is a design parameter that is usually
varied, we can absorb the constant α into µ so that

w̃i+1 = w̃i − µ
(
− p

′
e[e(i)]
pe[e(i)]

)
ui (75)

in which case the optimum nonlinearity effectively reads

fopt[e(i)] = −
p′e[e(i)]
pe[e(i)]

. (76)

Theorem 3 (optimum nonlinearity). Consider the setting
of Theorem 2. Let pe denote the pdf of the estimation error
e(i). The optimum nonlinearity that minimizes the steady-state
mean-square error is given by

fopt[e(i)] = −
p′e[e(i)]
pe[e(i)]

. (77)

5.2. Incorporating the Gaussian assumption on ea(i)

Implementing the optimum nonlinearity (67) or (76) re-
quires that we evaluate the pdf of e(i) at each time instant.
It turns out, however, that we can replace this task with the
simpler task of evaluating the variance of ea(i) in addition
to specifying the (time-invariant) noise pdf. To this end, re-
call that our derivation of the MSE expression relied on a
Gaussian assumption on the error ea(i), and, hence, so does
our subsequent derivation of the optimum error nonlinearity.
Fortunately, this assumption helps us obtain a more explicit
expression for the optimum nonlinearity (76). To see this, no-
tice that the estimation error is the sum of two independent
random variables,

e(i) = ea(i)+ v(i). (78)

Therefore, its pdf, pe[e(i)], is the convolution of the pdf ’s of
ea(i) and v(i), that is,

pe[e(i)] = pea[e(i)] � pv[e(i)] (79)

= 1√
2πσ2

ea

e−e
2(i)/2σ 2

ea � pv[e(i)]. (80)
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Here σ2
ea denotes the variance of ea(i).6 The above calcula-

tion reduces the determination of the optimum nonlinearity
to the task of modeling the noise pdf.

5.3. Estimating the varianceσ2
ea

Perhaps the most challenging task of the algorithm is estimat-
ing the variance of the a priori error ea(i)—a nonstationary
quantity. The easiest way out is to set σ2

ea to some constant
value. Alternatively, as done in the simulation, we first esti-
mate the variance of e(i) using a window of samples of e(i),
and subsequently estimate σ2

ea from

σ̂2
ea = σ̂2

e − σ2
v . (81)

Furthermore, to avoid malfunctioning of the algorithm, we
confine the estimate σ2

ea to a bounded interval [a, b] that is
determined by the designer.

Remarks. (1) From above, we see that the derivation of the
optimum nonlinearity blends smoothly with the stability and
steady-state analysis in that it relies on the same set of assump-
tions, and is also obtained as a fallout of the same energy
conservation approach.

(2) Our derivation of the optimum nonlinearity shares
another feature with the (stability) analysis in that it makes
use of the fundamental limit set by the Cramer-Rao bound
of the underlying estimation process.

(3) Also note that no heavy machinery is appealed to in
developing the optimum nonlinearity, maintaining the gen-
eral themes of clarity and simplicity. In particular, we avoid
the variational approaches that are usually employed in liter-
ature in designing optimum adaptation schemes (see [8, 20]).

(4) The nonlinearity (76) is derived under simpler as-
sumptions compared to what is available in literature. For
instance, we employ a weaker version of the independence
assumption (compare with [8, 10, 19, 20, 21]) and make no
restriction on the color or statistics of the input (compare
with [8, 10, 20]). The nonlinearity (76) also applies irrespec-
tive of the noise statistics or whether its pdf is symmetric or
not (contrary to what is assumed in [8, 19]). We only require
the noise to have zero mean.

(5) More importantly, perhaps, we avoid the need for any
linearization arguments making the nonlinearity (76) accu-
rate over all stages of adaptation. In contrast, the optimum
nonlinearity

f[e(i)] = −p
′
v[e(i)]
pv[e(i)]

(82)

that was derived in [8] using linearization arguments is only
accurate in the final stages of adaptation. In fact, the more
accurate expression (76) for the optimum nonlinearity col-
lapses to (82) as the filter reaches its steady-state.

(6) Notice further that expression (76) for the optimum
nonlinearity applies irrespective of whether the noise pdf
is smooth enough (differentiable) or not. Thanks to the

6The time dependence of σ 2
ea is suppressed for notational convenience.

smoothing convolution operator (see (80)), we can, for ex-
ample, directly calculate the optimum nonlinearity for binary
and uniform noise (see examples below). This comes contrary
to the nonlinearity (82) where an artificial smoothing kernel
needs to be employed for such singular cases [8].

5.4. Examples

In what follows,we show how the error nonlinearity manifests
itself for different noise statistics.

Gaussian noise

When v is Gaussian, so is the estimation error e(i) (since e(i)
is then the sum of two Gaussian random variables, v(i) and
ea(i)). In this case, the optimum nonlinearity (76) becomes

fopt[e(i)] = −
p′e[e(i)]
pe[e(i)]

= 1

σ2
e
e(i) (83)

which, up to the scaling factor 1/σ2
e , is the error function

of the LMS. Therefore, the LMS is the optimum adaptive
algorithm in the presence of Gaussian noise.

Laplacian noise

When v follows a Laplacian distribution, its pdf takes the
form

pv[v] = 1
2
e−|v|. (84)

Upon substituting this expression into (80), we can show that
the pdf of e(i) takes the form

pe[e(i)] = 1
4
eσ

2
ea /2

{
ee(i)

(
1− erf

[
e(i)+ σ2

ea√
2σ2

ea

])

+ e−e(i)
(

1+ erf

[
e(i)− σ2

ea√
2σ2

ea

])}
.

(85)

After some straight forward manipulations, we can show that
this leads to the following form for the nonlinearity −p′e/pe

fopt = −
(
ee(i)

(
1− erf

[(
e(i)+ σ2

ea
)
/
√

2σ2
ea

]

−
√

2/πσ2
eae

−(e(i)+σ 2
ea )

2/2σ 2
ea

)

− e−e(i)
(

1+ erf
[(
e(i)− σ2

ea
)
/
√

2σ2
ea

]

−
√

2/πσ2
eae

−(e(i)−σ 2
ea )

2/2σ 2
ea

))

×
(
ee(i)

(
1− erf

[(
e(i)+ σ2

ea
)
/
√

2σ2
ea

])

+ e−e(i)
(

1+ erf
[(
e(i)− σ2

ea
)
/
√

2σ2
ea

]))−1

,

(86)
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where erf is the error function defined by

erf[x] � 2√
π

∫ x
0
e−t

2
dt. (87)

Uniform noise

When v is uniformly distributed over [−1,1], we have

pv[v] =




1
2
, −1 ≤ v ≤ 1,

0, otherwise.

(88)

Upon substituting (88) into (80), we obtain

pe[e(i)] =
σea
2

√
π
2


erf

[
e(i)+ 1√

2σ2
ea

]
− erf

[
e(i)− 1√

2σ2
ea

] .
(89)

We can use this expression to show that

fopt[e(i)] =
√

8
π

1
σea

e−((e
2(i)+1)/2σ 2

ea )

× sinh
[
e(i)/σ2

ea
]

erf
[(
e(i)+1

)
/
√

2σ2
ea

]
−erf

[(
e(i)−1

)
/
√

2σ2
ea

] .
(90)

Binary noise

In the binary noise case, we have

pv[v] =




1 with probability 0.5,

−1 with probability 0.5.

(91)

In this case, the optimum nonlinearity reads

fopt[e(i)] = 1

σ2
ea

(
e(i)− e−((e2(i)+1)/2σ 2

ea ) tanh

[
e(i)
σ2
ea

])
.

(92)

5.4.1 Simulations

Here we use simulations to illustrate the favorable behavior of
the optimum algorithm in comparison to the LMS. The sys-
tem to be identified is an FIR channel with 15 taps normalized
so that the SNR relative to the input and output is the same
(10 dB in our case). The input is taken to be Gaussian while
the additive output noise is assumed to be binary or Lapla-
cian. The variance σ2

e is estimated using the most recent four
samples of e(i), and the estimate is in turn used in (81) to es-
timate the variance of ea(i). Whenever the estimate σ̂2

ea falls
outside the range [σ2

v/2,5σ2
v] ([σ2

v/10,5σ2
v]) in the binary

(Laplacian) noise case, we enforce the assignment σ̂2
ea = σ2

v
instead. The experiment is averaged over one thousand runs.

The LMS and the optimum adaptive algorithms are com-
pared (Figures 1 and 2) in terms of their learning curves;
the evolution of E[‖w̃i‖2] with time (also known as the

mean-square deviation or MSD). We also plot the nonlin-
earities employed by both algorithms. Since the optimum
nonlinearity is time varying (through its dependence on σ2

ea),
it has a stochastic nature. The plots thus show the optimum
nonlinearities in their averaged forms.

5.5. Relation between optimum and other
nonlinearities

The optimum nonlinearities (76) and (82) are expressed in
terms of some pdf (pe[e(i)] or pv[e(i)]) and its derivative.
This makes the nonlinearities difficult to implement since
the pdf is usually unknown and/or time-varying. Even if the
pdf is known, the corresponding nonlinearity would be ex-
pressed in terms of transcendental functions (e.g., as in (90)
and (92)), which do not lend themselves to real-time im-
plementations. This is compounded by the fact that differ-
ent distributions (i.e., pdf ’s) call for different nonlinearities.
Thus, the optimum nonlinearities defy an important feature
of least-mean-square algorithms, namely computational sim-
plicity. A more alarming issue though is that these nonlinear-
ities do not seem to relate to the ubiquitous LMS algorithm
or its common variants. In the following, we address both of
these issues for the nonlinearity (76) by representing the pdf
pe[e(i)] in an Edgeworth expansion, which we now digress to
introduce. The nonlinearity (82) can be dealt with similarly.

5.5.1 Edgeworth expansion ofpe
Let γj denote the jth cumulant of e(i) and let σ2

e denote its
variance. Assuming pe to be even, its Edgeworth expansion
is given by [34]

pe[e(i)] = 1
σe
φ
[
e(i)
σe

] ∞∑
j=0

a2jHe2j

[
e(i)
σe

]
, (93)

whereφ is the standard (zero-mean, unit variance) Gaussian
pdf and He2j is the Hermite polynomial of degree 2j [35].
The coefficients aj are defined recursively by

a0 = 0, a1 = 1, a2 = 0,

aj =
1
j

[
γ1

σe
aj−1 +

(
γ2

σ2
e
− 1

)
aj−2

+
j∑

m=3

γm
(m− 1)!σme

aj−m

]
(j ≥ 3).

(94)

Since pe is even, we can show that a2j+1 = 0 for all j,
and only the even indexed coefficients appear in (93). Thus,
pe[e(i)]/φ[e(i)/σe] is an infinite linear combination of
Hermite polynomials of even degree. Alternatively, since
He2j[e(i)/σe] is a linear combination of even powers of its
argument, so is the expansion (93). This series expansion is
therefore similar to the familiar Taylor expansion except for
the fact that it is expressed in statistically relevant terms—
the aj ’s, which are defined in terms of the cumulants rather
than the derivatives of pe. The expansion (93) is also differ-
ent from a Taylor series in that we are not interested in its
convergence as much as in representing pe in as few terms
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Figure 1: Error updates and learning curves for the LMS and optimum algorithm (binary noise case).
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Figure 2: Error updates and learning curves for the LMS and optimum algorithm (Laplacian noise case).

of (93) as possible. For most practical purposes, the first few
terms of (93) are sufficient for a good approximation [34].

5.5.2 Relating the nonlinearities

With the Edgeworth expansion (93) at hand, we now
show how the optimum nonlinearity (76) relates to the
(non)linearities of the LMS algorithm and its variants. Us-
ing (93), we can represent the optimum nonlinearity (76),

after some straightforward manipulations, as

fopt[e(i)] = −p
′[e(i)]
p[e(i)]

= e(i)
σ2
e
− 1

σ2
e

∑∞
j=2(2j)a2jHe2i−1

[
e(i)/σe

]
∑∞
j=2 a2jHe2i

[
e(i)/σe

] .

(95)
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We can finally put fopt in a more familiar form by approxi-
mating the rational function in the last equation by its Taylor
series. As the rational function is odd, the Taylor series will
contain only odd powers of e(i), and we can, therefore, write

fopt[e(i)] =
∞∑
j=0

c2j+1e2j+1(i). (96)

The c2j+1’s can be written in terms of thea2j ’s but the explicit
dependence is not essential for the subsequent discussion.
The following remarks are in order.

Remarks. (1) The lowest order term in (96) is that employed
by the LMS algorithm. Thus, LMS is a first-order approxima-
tion of the optimum nonlinearity, which explains the robust-
ness of the LMS in noisy environments (see also [3] for a de-
terministic account of the robustness of the LMS). Moreover,
the cubic term of (96) corresponds to the error nonlinearity
of the LMF algorithm, while the higher order terms are those
of the LMF-family.

(2) The approximation (96) also suggests that a mixture
of the LMS algorithm and the LMF family of algorithms will
outperform any of the individual algorithms as such mixtures
represent a better approximation of the optimum nonlinear-
ity. The LMS-LMF mixture (also known as the LMMN algo-
rithm) was actually simulated in [36] and shown to outper-
form both of the constituent algorithms. The approximation
presented here not only justifies such mixtures but can ac-
tually be used to design optimal mixtures by calculating the
coefficients c2j+1 (which, in turn, can be explicitly expressed
in terms of the estimation error cumulants, γj).

(3) From the above, it follows that the optimum nonlin-
earity is nothing but an optimal mixture of familiar nonlin-
earities.

(4) The approximation (96) alleviates the difficulties asso-
ciated with the implementation of the optimum nonlinearity.
In particular, it applies irrespective of the distribution of the
estimation error pdf pe. The approximation also provides
for a tradeoff between numerical simplicity and more accu-
rate approximation of the nonlinearity. Notice, however, that
(96) still calls for the estimation of the coefficients c2j+1, or,
equivalently, of the cumulants γi of the estimation error e(i).

(5) By expanding the noise pdf, pv , in an Edgeworth se-
ries similar to (93), we can extend the above remarks to the
nonlinearity (82) (see [37]).

6. CONCLUSION

In this paper, we pursued a unified approach to mean-square
analysis of adaptive filters with arbitrary error nonlinearities.
In particular, starting from an energy conservation relation,
we were able to arrive at sufficient conditions for stability
without relying on any independence assumptions. Using the
same relation we also showed that the MSE is the fixed point
of a nonlinear function. This nonlinear expression for the
MSE was subsequently used to derive an expression for the
optimum nonlinearity.

We would like to emphasize that all our results apply for
any error nonlinearity and for arbitrary input color and statis-
tics. They are obtained as a fall out of the same energy conser-
vation relation and rely on weak assumptions that are quite
accurate for long enough filters.
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