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Abstract

We propose a generalized feedback model and compressigsngdrased opportunistic feedback
schemes for feedback resource reduction in MIMO Broadcasin@els under the assumption that both
uplink and downlink channels undergo block Rayleigh fadiRgedback resources are shared and are
opportunistically accessed by users who stireng i.e. users whose channel quality information is above
a certain fixed threshold. Strong users send same feedbfacknation on all shared channels. They are
identified by the base station via compressive sensing. Bo#tog and digital feedbacks are considered.
The proposed analog & digital opportunistic feedback sasare shown to achieve the same sum-rate
throughput as that achieved by dedicated feedback schdmeswiith feedback channels growing only
logarithmically with number of users. Moreover, there isoah reduction in the feedback load. In the
analog feedback case, we show that the propose scheme setthecéeedback noise which eventually
results in better throughput, whereas in the digital feelllzase the proposed scheme in a noisy scenario
achieves almost the throughput obtained in a noiselescatedi feedback scenario. We also show that
for a fixed given budget of feedback bits, there exist a traffi&etween the number of shared channels

and thresholds accuracy of the feedback SINR.

Index Terms

Compressed sensing, feedback, lasso, multiple-inpuiptesbutput (MIMO) systems, opportunistic,

protocols, scheduling.

. INTRODUCTION

Recently, it has been shown that dirty paper coding (DPC)eseb the sum-rate throughput of the
multiple-input multiple-output (MIMO) broadcast chanrjél, [2]. However, it requires a great deal of
feedback as the transmitter needs perfect channel stateniafion for all users and is computationally

expensive [3]. Since then, many works have attempted toegehthe same sum-rate throughput with
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imperfect channel state information (reduced feedbacHt)lo@his was done by applying opportunistic
communication in the forward link [4]- [7].

By reviewing the feedback protocols suggested in litemtone can note that generally the following
three components are fed back and user selection is baseithen ene or a combination of these
components [4]- [9]:

1) Channel Direction Information (CDI), e.g., beam indel(Bjuantized channel index (QCI)... etc.

2) Channel Quality Information (CQI), e.g., SNR, SINR, chahnorm etc.

3) User identity (ID)

Feedback schemes can be differentiated according to whittadeedback is analog or digital. It is
termed digital if the feedback involves only digital datatéiger or bits) and analog otherwise. Feedback
schemes can also be classified as either opportunistic copportunistic.

While the forward link is opportunistic in nature, almosk f@edback schemes are non-opportunistic.
Here, each user has a dedicated feedback channel. For eéxampindom beamforming (RBF) scheme
proposed by Sharif and Hassibi [4], the users are diffeatadi according to the channel direction (i.e.
what beam direction is the channel mostly aligned with) acebedingly users feedback to Base Station
(BS) the SINR corresponding to that directionly. So, each user feedback one integer and one real
number. In order to reduce the feedback load further Diaalein [7] propose a threshold based RBF.
Here, instead of feeding back the SINR for the best beam foh eeceive antenna (one real plus one
integer numbers), the user only transmits one bit to the BBcating whether or not the SINR on a pre-
selected beam for any receive antenna is above a given thdeSine scheme is repeated for each beam.
Since interaction or cooperation among the competing usaret allowed, hence defying opportunism,
there is a linear increase in the feedback resources (omel@rwith the number of users [5], [6]. Even
if thresholding is applied, there is no reduction in the nembf feedback channels. This is because the
channels are reserved even when users are not sending afpad&enformation.

Recently, some works have started to consider opportarfisédback schemes where feedback re-
sources are shared and are opportunistically accesseddnyg sisers i.e. users whose CQI is above the
given thresholds. Thus, in [8], Tang et. al. propose a feekllsgheme with fixed number of feedback
slots (channels) that are randomly accessed by strong. Uisexgery slot, each strong user independently
attempts to send back to the BS a data package containingdtddentity (ID) with a probability. If two
or more users feedback in the same slot, collision occurgtenteedback in that slot is discarded. In the
case when multiple users successfully feeding back, theaB&omly selects one of the successful users.

Although the scheme requires only an integer feedback p#rislis suboptimal as the user is selected
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randomly. The scheme was only proposed for the single-igimgfie-output (SISO) case. In [9], Rajiv et.
al. propose a feedback scheme based on random access slibis MIMO case that requires only user
identity feedback (also an integer feedback per slot). & slcheme, time is divided into slots that are
equally divided among the beams (CDI). Each slot then cpoeds to a pre-determined threshold. Thus,
if a user's CQI (e.g. SINR) on a particular beam exceeds tteskiold corresponding to a particular slot,
that user would feedback on that slot.

Both of the two schemes above require accurate timing-sgnctation to avoid collisions, which is
difficult to achieve in practice. Moreover, feedback to th§ B successful if there are no collisions,
i.e., only one user is attempting to feed back in a slot. Initaaid the two schemes only work for
digital feedback but not when the designer is interestechalag feedback. In all the feedback schemes
discussed above, the feedback links were assumed ideal thbeforward links were subject to both
fading and noise. This asymmetry in the way the two links egated is unrealistic.

In this paper, we consider a broadcast scenario where thafdrand the feedback links are symmetric
in that they are both i) non-ideal and ii) opportunistic oadd. Thus, both links undergo Rayleigh
fading and are subject to additive Gaussian noise. Moredtlverchannels in both links are shared and
are opportunistic in the sense feedback channels are dtaditgy strong users. Finally, the feedback
links can be used for both analog and digital feedback.

The paper proposes a generalized feedback model and capreensing (CS) [10]- [14] based op-
portunistic feedback protocols for feedback resourceatoln. Just as in all existing feedback techniques,
a number of channel directions or beam is first determined.eboh direction, the number of feedback
channels is fixed and strong users fedback their CQI infdanain all feedback channels. In the analog
feedback case, each strong user feds back CQI value wherd¢hs digital feedback case, each strong
user feds back “1” if his CQI is above a particular threshold eemains silent otherwise. This creates an
undetermined system of equations in a sparse vector of.Uaersise the emerging compressive sensing
technigue to identify users who have fed back and to estirttaefedback CQI. Users with higher
value CQI have a stronger chance of being recovered. Thétgeshiained via compressive sensing are
refined using least-squares. As the feedback links are ,rsxsthe BS backs off on the noisy CQI based
on the variance of the noise. We obtain the optimum back ofthennoisy CQI that maximizes the
throughput. A user among strong users is selected (strong#®e analog feedback case & randomly in
the digital feedback case). The scheme is repeated for d@nimel direction. Although we have used
SINR feedback, the proposed schemes can work with any ki@f(e.g. SNR). It is important to note

that our scheme is less sensitive to timing-synchroninagioors, as the scheme will be affected only
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if out of synchronization user is selected for a particulaarmmnel direction (the probability of which is
low).

The remainder of the paper is organized as follows. In seddilo generalized feedback model is
introduced. In sectioplll we discuss the proposed feedisaiegitegy. In section IV, we present the sum-
rate throughput obtained by the proposed schemes in the B8# tn sectioh V, performance evaluation
of the proposed feedback schemes is presented. Feedbaukethenining is discussed in section] VI
followed by numerical results and conclusions in sectlofi$avid [VIIT] respectively.

Notationn We use bold upper and lower case letters for matrices antbrgeaespectivelyA”, A*
and AT refers to Transpose, Hermitian conjugate and pseudosavef A respectively.E,[-] denotes
the expectation operator w.rt, andP[ | is the probability of the given event. The natural logaritlem
referred to adog(-), while the base 2 logarithm is denotedlag,(-). f(z) = O(g(z)) is equivalent to

f(z) = cg(x) wherec is a constant|A| denotes the size of a séit

II. SYSTEM MODEL
A. Downlink Transmission Model

We consider a single cell multi-antenna broadcast chanitielmantennas at the base station (transmit-
ter) andn users (receivers) each having one antenna. The channeddsilterl by a propagation matrix
which is constant during the coherence interval and is knoempletely at the receiver. Let € CP*!
be the transmit symbol vector and let be the received signal by theth user, the received signal by

the ¢-th user can then be written as

x; = /pihiu + w;, i=1,...,n Q)

whereh; € C'*? is the channel gain vector between the transmitter and tbg asdw; is the additive
noise. The entries df; andw; are i.i.d. complex Gaussian with zero mean and unit variagfit€(0, 1).
Moreover,u satisfies an average transmit power constrifit*u} = 1 andp; is the SNR of thei-th
user. A homogeneous network is considered, in which allsubave the same SNR, i.e; = p = P/p
fori=1,...,n, whereP is the total power available at the transmitter assuming tthe noise power
is unity. We also assume that the number of mobiles is greélaser or equal to the number of transmit

antennas, i.en > p, and that the BS selectsout of n users to transmit to.

B. Generic Multi-antenna Feedback Channel

We present here a general model for the multiuser feedbaakne withr feedback channels (possibly

shared) among. users, in which users report channel quality informatio@I)Cto the base station in
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order to exploit multiuser diversity. As we shall soon séés tnodel encompasses the existing feedback
models. The feedback channels are described by a propagatitrix A which is constant during the
coherence interval and is assumed to be perfectly knowneaB8& (receiver), and are to be independent
of the downlink channel. Letr € C"*! be transmit feedback vector and lgt be the signal received
via thei-th feedback channel. The signal received throughittrefeedback channel is mathematically

described as

1 a1l a2 - Qin U1 w1
Y2 a21 Q22 - Q2pn U2 w2
= +
_yr_ _arl (075 arn_ _Un_ _wr_
or equivalently
y=Av+w (2)

wherer < n anda;; represents the (generally complex valued) gain ofittrechannel for thg-th user.
Note that in contrast to the majority of existing feedbaattuetion techniques, a noisy feedback channel
is assumed. The entries of represent the additive noise and are assumed to be i.i.plerrGaussian
with zero mean and variane€’, CA (0, 5?).

If no fading is consideredX is deterministic), all entries oA are equal to a constant, whereas if the
feedback channels undergo block Rayleigh fadidgiemains constant during the coherence interval and
its entries are i.i.d. complex Gaussian with zero mean arfidvariance,a;; ~ CN (0,1), assumed to be
known perfectly at the BS via feedback channel trainingdaksed in Section VI).

We summarize in Table I, how our feedback modeél (2) appligkédeedback models (opportunistic or
not) suggested in literature [4]- [9]. Thus, in the non-oppoistic feedback model, each user is allocated
its own feedback channel and the uplink channel ma&ibecomes diagonal and of size(equal to
the number of users). For the opportunistic models proposé®] by Tang et. al., the feedback channel
matrix A becomes diagonal of size x r, wherer is the number of feedback slots and is less than
n. v represents feedback data in each slot, and when a collisian particular slot takes place, the
corresponding entry of is not valid. The same model holds for [9] except that in tltsesner is not
fixed but varies randomly. Also; may not necessarily be less thanin all these schemes, the additive
noisew is set to zero.

In this paper, we take a more general approach and considentantion-based feedback protocol,

which assigns independent multi-access contention cl&rfioe CQI reporting in which the feedback
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process should itself be a filter that selects strongestsuddrere are different ways to interpret the
system of equations (cfi](2)). One possibility is to assuh@ each user is equipped with one antenna
and the BS is equipped with antennas. In this casg; represents the gain from theth user to the
i-th antenna (spatial feedback channels). Another po#gilsl to assume that each single-antenna user
is going to feedback the same information ovdrequency bands shared with the other users. Thys,

represents the gain of theth user in thei-th band (frequency feedback channels).

[1l. PROPOSEDFEEDBACK STRATEGY

Before we discuss the proposed feedback strategy, we priespartant compressive sensing results

used in our work. A short introduction to compressive sem&ngiven in the Appendix.

A. Sparsity Pattern Recovery Results

Compressive sensing refers to the recovery of the sparattem .S (with |S| = s) of signalv € R”

accurately from limited measurements

S=1{ie{l,... n}v %0} (3)

Two approaches for recovering the sparsity pattern in theynsetting (cf. [(2)) are discussed here, the
only exception being that these results are derived for #s= avhen the entries & andw are i.i.d.
real Gaussians i.ea;; ~ N (0,1) andw; ~ N (0,0?).

1) Sparsity pattern recovery using LASSO [13#:recent paper by Wainwright [13] shows that it is
surprisingly possible to recover the sparsity pattern ghals accurately from limited measurements in
a noisy setting using LASSO which is-constrained quadratic program (QP). The LASSO gives the

estimatedv.

N . 1
V = arg min {Q—HHY—AVH%—i-oszHl} 4)

veRnx1
wherea > 0 is a user-defined regularization parameter.

The number of measurements (or channels) required for ssitdesparsity pattern recovery using
LASSO must satisfy:; = ¢;slog(n — s), wherec; is a constant.

2) Sparsity pattern recovery using Maximum Correlation J[145imilar results for sparsity pattern
recovery from limited measurements in a noisy setting usiraximum correlation, a much simpler
method compared to LASSO, are derived by Fletcher et. all4). [Maximum Correlation estimate is

defined as the indices corresponding to shiargest values of, where! is defined as follows
I= ATy
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The number of measurements (or channels) required for ssftdesparsity pattern recovery using
maximum correlation must satisfy, = coslog(n — s), wherecy is a constant.

3) Refining CS results using Least Squaresour framework, we propose to refine the results obtained
via compressive sensing through least squares (LS) usmdollowing procedure: once the sparsity

patternS is known, we can form matriA s with columns ofA corresponding t&6 and estimater as

vis = Agy

B. General Strategy of Using Compressive Sensing for Fesdba

Any feedback scheme has two components, a direction compamel a magnitude component. The
transmitter usually has certain pre-determined direstifmn which it seeks user feedback. Thus, the BS
announces that it is seeking feedback for a particular tiinecAt this instant, the users whose channels
lie at or are close to this direction, feedback their CQI (SISRIR, channel strength etc.). Now a limited
number of users will feedback on the set of shared feedbaahreis according to input/output equation
@).

Thus the vectow in (2) is sparse with sparsity level determined by the nunabersers who feedback.
CS can now be used to recover the sparsity pattem [df3]- [14] (i.e. which user prefer that particular
direction) and could also recover the vectoitself [13]) (i.e. users’ feedback CQI). Moreover, the karg
the value of particular CQI, the higher the chances of itevery. Another factor that enhances the level
of recovery is how sparse the vecteras compared to the number of feedback channels available. We
need at least one strong user (ikex 1) for each beam or direction in order to achieve full multiihe
gain which implies that small values efare sufficient. To reduce the number of users who feedback
we pursue a thresholding strategy where the user will fegddbiehis CQIl is greater than a threshofd
to be determined.

Now consider a particular beam (CDI) (all beams will behavam identical manner as the users are
i.i.d. and the beams are equi-powered). Noting that thesu€#pl are i.i.d., we can choosgto produce

a sparsity levek. This happen by requiring that

F(¢) = arg max) <Z> w(l—w)"™* (5)

u€e(0,1
where F'(¢) or u is the complementary cumulative distribution function (@€ of CQI (SINR) defined
S _ exp(=(/p)
as:F(¢) = P[SINR> (] = {55, ¢ = 0.
Lemma 1: Threshold that maximiz&$ (5) is givencby F~1 (£)
Proof: Lety = (’s‘)us(l — u)"~*. Differentiating+y w.r.t v and setting the derivative to 0, and solving

for u yieldsu = s/n. Thus,F(¢) = s/n, or { = F~1(s/n).
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C. Feedback Protocol for the Analog Feedback Case

In the analog feedback scenario, users above thresholdfaekl their analog CQI value. The CS
strategy then allows the BS to recover all users who tramsththeir CQI. This off course will be true
provided that the number of users who feedback is less thaqoal tos. Here, we assume that the
probability the a user is strongest for more than one beaneggigible as the number of users are
relatively much larger than the number of beams. It has bhewrs in [4] that this is a valid assumption
under these conditions. The steps of the proposed comypeessnsing based opportunistic feedback
protocol are as follows:

1) Threshold Determination: BS decides on thresholding lewebased on the sparsity level that can

be recovered.

2) User Feedback: Repeat the following steps for each beam.

o CQI Determination: Each user determines his best beame@wonding to the highest CQI
value).

« CQI Feedback: Each user feeds back his CQI if it is higher tham all shared channels.
Otherwise, the user remains silent.

« Compressive Sensing: BS finds the strong users using CS.

« Least-squares estimation/refining: BS estimates or refemdts obtained via CS using least-
squares.

« Optimum CQI Back off: BS backs off on the noisy CQI (SINR) bége the noise variance
such that the throughput is maximized.

3) User Selection: Select users and schedule them to beams.

Remark 1:Once CQI has been determined for each beam direction, the dtason can proceed to
implement any of the various multiuser scheduling techesquror example, the BS can go for random
beamforming and might opt for a second-stage feedback tgréise final precoding matrix [6]. The
second-stage feedback is requested from the selected aisigrsThus, the amount of second stage
feedback is relatively much smaller compared to the amofifitsd-stage feedback. Alternatively, the BS
could also implement the semi-orthogonal user selecti®jSalgorithm (zero beamforming) proposed

in [5].

D. Feedback Protocol for the Digital Feedback Case

The digital feedback is similar to analog feedback except thser feeds back “1” if his CQI for

a particular beam is above a particular threshold. Othexwtise user remains silent. To increase the
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feedback granularity, we let the users compare his CQI td afgbresholds, not just one. Thus, suppose
that we want to sek thresholds(; < { < ... ,< (x such that the number of users whose CQI lie
between the two consecutive thresholds [;+1) is equal tos. Note that the last interval i(f, c0).

Following our discussion in subsectibn 1lI-B, we can set lingermost threshold as

F(G)n=sk, or, (=F" <ﬁ>

n

Continuing in the same way, we get

G = F <L—1>> e Go= B (D).

n
The feedback procedure is as follows:
1) Threshold Determination: BS decides on thresholding leve]s, (s, ..., (; based on the sparsity
level that can be recovered. For each threshold intedyat]; ), repeat thdJser Feedbaclstep.
2) User Feedback: Repeat the following steps for each beam.
« CQI Determination: Each user determines his best beame@wonding to the highest CQI
value).
« CQI Feedback: Each user feeds back his CQI if it lies in ttoEsinterval [(;, ¢;+1) on all
shared channels. Otherwise, the user remains silent.
« Compressive Sensing: BS finds the strong users using CosiygeSensing.
« Least-squares estimation/refining: BS estimates or refemdts obtained via CS using least-
squares.
3) User Selection: For each beam, BS randomly selects one of strong users ofigihedt active
threshold interval, where active threshold interval heemans that there is at least one user sending

feedback data in the interval. Here, CQI is the lower limitthé highest active threshold interval.

IV. THROUGHPUT IN THERBF CASE

In this section, we present the sum-rate throughput actlieyethe proposed schemes. Although we

focus on RBF, the proposed schemes can be applied to otherfdreaing methods (e.g. ZFBF).
A. Throughput in the Analog Feedback Case
The sum-rate throughput achieved in the RBF case with dextidgdeal feedback links is given by [4]

p
R~E | logy(1 + max SINR; ) (6)

m=1
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Also, it is shown in [4] that[(B) is equivalent to

R ~ plogy(1 + plog(n) — p(p — 2) loglog(n)) ()

As the SINRs fed back by the users are transmitieds and the feedback links are noisy, so there is a

need to back off the noisy received SINRs based on the noisanea as follows:
SINR = SINR + w 8)

where the actual and noisy SINRs are denoted by SINR and ‘Si¢#iRectively andv represents noise.
Now, if we decide to back off the received SINRs by an amaofinthen the back-off efficiencyyj i.e.
the probability that this backed off SINR is less than or éqaahe actual SINR is given as follows:

n:P§WW—A§SWﬂ:Mw§N:1_Q(é>

Ow
where( represents the Q-function. Thus, the effective througlfwith back-off on noisy SINR) can be

written as:

Rogr = (1-Q(£) ) ptogs(s - 2) ©

wheres =1+ plog(n) — p(p — 2) log log(n).
Differentiating R. sy w.r.t. A and setting it equal to 0, yields

o(2) (325w

Simulation results confirm that the value Afthat satisfies the above equation maximizes the effective

throughput.

B. Throughput in the Digital Feedback Case

The sum-rate throughput achieved pyeams in the multiple thresholds {(n number) based digital

feedback case for RBF is given below.
R ~ pE |logy(1 + [max G)

Whefefgagk@ is the lower limit of the CQI of the highest active threshahdeirval.
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Alternatively, the same throughput can be derived anaiftias follows. The throughput achieved for

any transmit beamn is given as follows:

k
Rm = ZlogQ(l + ¢;)P(selected user in the threshold intenkhreshold interval
i=1

The probability of the threshold interval (denoted@4g is given byP(Q;) = [F((i+1) — F({;)], where
F(¢) is the cumulative distribution function (CDF) of CQI (SINREfined as'(¢) = P[SINR < (] =

1-— C(XlljrC E/’{ ,¢ > 0 [4]. Capitalizing on the work of [15], we calculate the prbiddy that selected user

is in threshold intervat); as follows:

n—1
P(selected user is i);) = ( >7D P.
( Z] 172

Jj=0
where

P, = P(j users other than the selected user ar@jhn= [F((;+1) — F(¢)),and
Py =P((n—j — 1) users lies below the interva);) = [F(¢;)]" 7~V

Substituting these values @ and?P», and after some manipulations, one can show that

[F(Gir)]" = [F(G)]"
[F(Ci1) = F(G)]

P(selected user is if);) =

Thus,

k
R =Y logy(1+ G)([F(Gs)]" = [F(G)]™)

i=1
As, in our case there agebeams and all of them are identical, so the sum-rate thraughmiven as

P k
R= Rm=pY logs(l+G)([F(G1)]" = [F(G)]")
m=1 =1

V. PERFORMANCE EVALUATION

We consider following metrics for the performance evalaif the proposed feedback schemes.

A. Feedback Resources Reduction

There is a significant reduction in number of feedback chisnmguired for carrying feedback infor-
mation. The proposed schemes requires @nflog(n)) feedback channels (shown in the Lemma given
below) as opposed ta feedback channels required in the dedicated feedback case.

Lemma 2: The number of multiple access feedback channelsredgfor the proposed schemes is

$(slog(n)), wherec is a constant.
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Proof: Specifically, let's assume that there arehannels shared between users over which feedback can
take place. We can represent these channels using the sgétequations[(?). As already mentioned,
(2) is similar to ones considered in [13]- [14], except thabur case the measurement mattx and

the noise vectow are complex instead of real. So, we replace the complexedatnodel in[(R) by its
real-valued equivalent as shown below

R) | L | R
() S(w)

whereR(A) & S(A) represents real and imaginary part Af After simplification the above equation

RA) —S(A)
S(A)  R(A)

\%

0

reduces to
Ry) | _ | ®(A) [ y ] N R(w)
S(y) 3(A) S(w)
or,
y=Av+w (11)

The entries ofA are i.i.d. A (0,1/2), and the entries ofv are i.i.d. N (0,0%/2). The above model
(V-A) gives us the2r x n real measurement matrix, ad x 1 real noise vector, so the sparsity pattern
recovery techniques discussed in Secfion llI-A can be agdplAlso, note that small values of are

sufficient (Sectiol III-B). Therefore, we have

2r = cslog(n), = r= %(slog(n)). (12)

Lemma 3: In the RBF case when— oo, the minimum number of multiple access feedback channels
required is (log log log(n)) log(n).
Proof: FromLemma 2 we haver = $(slog(n)) and forn — oo, ¢ = 2 [13]. For RBF systems with
large number of usersi(— oo0), the minimum value of (the number of users who should feedback)
required to achieve the sum-rate throughput is giveridaylog log(n) [16]. Substituting these value of

cands in r = gslog(n), we conclude that number of multiple access (shared) feskdbaannels is

r = (logloglog(n))log(n).

B. Feedback Noise Reduction in the Analog Feedback Case

The other important benefit of this scheme is the feedbacken@iduction (which eventually results in

better throughput) in the analog feedback case. This isusectihe feedback data of each user is carried
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over all shared channels. This come in contrast to dediceltetinel feedback case where feedback

is carried over one channel only. We analyze the error camae matrix (ECM), as it will allow us

to identify the optimum amount of back off required on thesyoBINR which depends on the noise

variance. Also, we analyze two measures of ECM — trace anerm@tant of error covariance matrix.
1) Shared Feedback Channel&rror covariance matrix after the sparsity pattern is idiect and LS

is applied is given by [17]
ECM=[R, '+ ALR,, 'Ag]™! (13)

whereR, = E[vgvi] = 021, andRy, = E[wsw}] = 02 1. vg andwyg refers to the entries of andw

corresponding t&5. Substituting these values in_(13), yields

1 1 -1
E[ECM] = Ea-a, [<0—2I + gAS> ] (14)
a 2 b 2
2 IR (15)
e r

where (a) follows because for fixed and larger, E[A5Ags] — 71 [18], and (b) follows because for
larger and high SNR(j‘T—E; +7) —r. Fore2 =1, 02, = 1/p wherep is SNR.
« Trace of ECM: Using[(14),

s

E[tr(ECM)] = E|a, |2 ||a.|2 [Z(l + PHaiH2)_1] = sEjay2[(1+ pllall*)™")
i=1

where||al|? is a chi-squared variable withr degrees of freedom. Therefore,
& 1
E[tr(ECM)] = s/ 14 pz) t——az( Ve 2dy
wECM) =5 | (1+p2) 1
whereI'(-) is the gamma function [19]. Using (3.383.10) of [19], the @bevaluates to
E[tr(ECM)] = s(1/p)"e"/?T(1 —r,1/p)

whereI'(-,-) is the incomplete gamma function [19].

o Determinant of ECM: Using (14),
1 1 -1

v w
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We can write the above equation in terms of eigenvalueA A s as follows

s o\ L
E[det(ECM)] = Ej, .., [H (Jiz * ;\_22> ]

i=1 v

p(A) is given by: 37370 gy (L7 (V2N 26 [18], wherel] ~*(A) = fe* ATk (e

is the associated Laguerre polynomial of ordler
Alternatively, if we use the approximation in_{15), tracedateterminant of ECM are given b@%) and
<i>s respectively.

pr
2) Dedicated Feedback Channels:

1 1 \* o2
(o) - (49

Foro? =1, 02 = 1/p wherep is SNR.
« Trace of ECM: Using[(T6), fECM) = n (14 p)*.
« Determinant of ECM: Using(16), dECM) = (1 + p) "
3) Comparison between Shared & Dedicated Feedback ChanasésCTrace of ECM and its ap-

ECM =

proximation is plotted in Figl]1. Similar plot for determimtais omitted due to space limitation. Thus,
from (18) & (18), we conclude that the back off on the SINR)'(;”—\/";) in the shared feedback channels
case as opposed (o) in the dedicated feedback channel case.

Another point that needs to be noted is that the trace of ECRicfwis commonly refereed as cost
function and should be minimized [17]) in the shared feedbdwannel case is much smaller than that

obtained in the dedicated feedback channel case.

C. Feedback Load Reduction

In addition to the feedback resources reduction, there isdaation in the amount of feedback. In
RBF scheme with dedicated feedback channelf4ieal values and integer values:{log, p bits) are
fedback, as there anme users in the system.

1) Analog Feedback Caserhe proposed CS based analog feedback scheme requiregrongal
values to be fedback. This is because thererashared channels and the scheme is repeated for each
beam. Note that the feedback load reduction is more domimasystems with large number of users,

asr ~ O(log(n)) andp is small.
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2) Digital Feedback CaseThe proposed CS based digital feedback scheme requirespénlypits
to be fedback. This is because there arghared channels and the scheme is repeated for each beam
& threshold. Note that the feedback load reduction is momnidant in systems with large number of

users, as ~ O(log(n)) andp & k are small.

D. Trade-off in the Digital Feedback Case

Given a budget of bits that can be fedback, using intuitibmyas shown in [20] that trade-off exists
between the multi-user diversity and feedback accuracguincontext, multi-user diversity is related to
the number of shared channelsvhereas feedback accuracy is related to the number of idksh,
and so a similar trade-off may exist. The number of sharedmfla and thresholds must be chosen such

that the throughput is maximized. This is explored usingusation in sectior VI|I.

VI. FEEDBACK CHANNEL TRAINING

In the previous sections, we assumed that the chafredtimation is given to the system with the aid
of a “genie” at no cost. In this section, we present how thelieek channel training can be accomplished
and explore ways to reduce it. Here, we assume that (2) mefequency feedback channels i.e., the

entries ofA, a;; represents the gain of theth user in thei-th frequency band.

A. Channel Matrix is Full

The optimal number of symbols required for channel trainingequal to the number of transmit
antennas [21]. So we needtraining symbols for the downlink channel andtraining symbol for the
uplink channel (as there ane users each having one transmit antenna). Training for eaehin the
uplink can be performed one by one, i.e., the first symbol efdbherence interval is reserved for user
to perform training for all shared channels, and second symgserved for use2, and so on. Continuing
in this way, we neech symbol time to accomplish training for all users. Also, itiflgportant to note
that as there is little data to be sent for feedback purpasesjuch of the uplink coherence time can be
used for feedback training. Coherence time is typicallyhaf order of few thousand symbols, so training
would not be an issue for systems with moderate number okubkkwever, a method for reducing the

amount of feedback channel training time is discussed imthé subsection.

B. Channel Matrix is Block Diagonal

In order to reduce the feedback training time, we divide teersi into groups with each group being

allowed to feedback only on a set of feedback channels, bigereducing the full channel matrix to a
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block diagonal one
Ay

App =
Ay

Compressive sensing is applied in the same way as discussgection [1Il, the only difference being
that it is now applied on each block. Strong users in eachkb{oc group) are found and the user
corresponding to the maximum SINR among the strong usems &b blocks is selected. As the users
are i.i.d., so we divide the feedback resource equally antbag: groups. Thus, training can now be
performed for each block simultaneously. This approachiced the feedback training time considerably,
e.g. if we divide the total number of users into two groupgnttthe training will requiren/2 symbol
time as opposed te symbol time required for the case when the channel matrixlis f

The flip side of this approach is that compressive sensingusapplied on the group of users instead
of all users as one block. Thus, for same sparsity le\elerall), with block diagonalization, the number

of feedback channels required is given below

fApy, = fa, +--+ fa,

=kfa,

e[ () ()])
Note that from the above equation it may first appear that theber of channels have reduced as the
qguantity inside the logarithm is reduced by a factorkofhowever, it is the other way round. This is
because now' has increased as the problem dimensioni¢ reduced by a factor of [13]. Thus, there

is a trade-off between the reduction in the amount of feeklliemining and the number of feedback

channels. Also, note that there is now an additional coimstraquirings/k to be an integer.

C. Non-fading Channels

When the channels are non-fading i.e., the channel gainsarstant (or 1), then each strong users
multiples its CQI with a unique binary chip sequence (cdirgijsof +1 each with probability 0.5) of
length equal to the number of shared feedback channalsd send it over the multiple access shared
channels. There are two ways of assigning chip sequencés tasers: pre-programmed in users’ device
or sending it over the air. If it is send over the air, then tfaning time (used in the case of fading
channels) can be used to send unique binary chip sequenefisitaisers. ThusA is r x n Bernoulli

matrix and so CS can be applied as Bernoulli matrices are showatisfy the RIP [10].

July 10, 2009 DRAFT



17

VIlI. NUMERICAL RESULTS

In this section, we present numerical results for CS-basedlfack schemes by applying it in RBF
context. We use = 4 base station antennas, and= 100 users. We set the threshold according to the
sparsity levek, and use the maximum correlation technique (unless mesdiotherwise) for compressive
sensing as this is much more computationally efficient thA8&0O. Each point in the figures represents
the sum-rate throughput achieved for shared number of eisudetermined by & s according to[(IR).
We use SNR = 10 dB for both downlink and feedback link (unl¢ased otherwise) for calculating the

sum-rate throughput.

A. Analog Feedback Case

In Fig.[2, we present the sum-rate throughput with sharedmélafeedback in the analog feedback
case. We use optimum back off on noisy SINRs in the analogofsgdcase. From this figure, we note
that for small values of the throughput is low. This is because the threshold workkfaresystems with
large number of users but for systems with moderate numbesers, we may have more or less number
of users above the threshold than desired. So, if wes detv, then the probability that a beam has no
strong user is relatively higher (resulting in a multiplexiloss) to the case whenis large. However,
large values ofs requires more feedback channels. Also, we see that the nuoftshared channels
required to achieve the maximum possible throughput obthin a noisy dedicated feedback scenario
is 11 (corresponds te/2 = 0.4 ands = 6). Also, it worth mentioning that the proposed scheme comes
close to achieving the throughput obtained in a noiseleddted feedback scenario (dedicated feedback
with ideal feedback links) due to feedback noise reductiote that90% of throughput in noiseless
dedicated feedback case is achievedibyshared channels (correspondscf@ = 0.8 ands = 5).

In Fig. [3, we present results on block diagonalization métpooposed for reducing the feedback
training time (sectiom_VI-B). Here, we divide00 users into two groups 050 users and compressive
sensing is applied on each group. It is clear from the figuat tthis method requires few more feedback
channels. Also in this figure, we present result based on IASHich shows that LASSO method
performs marginally better than maximum correlation mdtho

In Fig.[4, we present the sum-rate throughput achieved bystage RBF in the analog feedback case
when the feedback channels are noiseless. In the secayelaitéhe two-stage RBF, additional feedback
information (beam gain information (BGI) [6]) is requestitdm the selected users only and lterative
Beam Power Control (IBPC) algorithm proposed in [6] is usedthe re-distribution of the total power

among the active beams (beams for which there are strong)useamn optimized manner. From the figure,
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we see that there is hardly any gain for two stage RBF withadddd channel feedback, however, it is
evident that for compressive sensing based opportuniséidifack protocol, two-stage RBF is effective
even for moderate to large number of users. This is because ifser is strong for some beams, the
system still suffers from the multiplexing loss but the powé those beam are distributed among the
active beams in an optimized way. Also, note that there isaukoff required here as the feedback links
are noiseless. With two-stage RBF, the number of shared&médchannels required i$ (corresponds
to ¢/2 =0.8 ands = 4).

B. Digital Feedback Case

For all digital feedback cases, we chase 1 (the minimum possible value) and set multiple thresholds
as discussed in sectign TtD. This is because for the prepezhemes = 1 will allow us to set the
highest possible uppermost threshold thereby ensuringltaehithroughput.

In Fig. 8, we present the sum-rate throughput achieved witiresd channel feedback in the digital
feedback case. Is is evident form the figure that the propeskdme in a noisy scenario achieves the
throughput obtained in a noiseless dedicated feedbaclasoguledicated feedback with ideal feedback
links). Also, we see that the throughput increases with ticegiase in the number of shared channels &
thresholds. Taking the pessimistic view, we need dififeedback channels (corresponds:t@ = 2 and
s = 1). However, it is important to note that beyond a certain nendf shared channels or thresholds,
the throughput either becomes stagnant or increases rallygin

In Fig.[8, we consider fixed budgets pfx kr bits that can be fedback. From the figure, we note that
such a trade-off exists and for a given fixed budget there igpiimum number of thresholds and shared

feedback channels that maximizes the throughput.

VIIl. CONCLUSIONS

In this paper, a generic feedback channel model and conipeesensing based opportunistic feedback
schemes are proposed. The proposed generic feedback thaotde is shown to encompass all existing
feedback channel models proposed in the literature. We blapen that the proposed analog & digital
opportunistic feedback schemes achieves the same surthrategghput as that achieved by dedicated
feedback schemes, but with feedback channels growing oghrithmically with number of users. Also,
we derived an expression for the sum-rate throughput initfiatifeedback case with multiple thresholds.

In the analog feedback case (noisy scenario), it has alsn bkewn that due to feedback noise

reduction, the proposed scheme comes close to achievirigrthigghput obtained in the case of noiseless
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dedicated feedback. In the digital feedback case, it has lsdgn shown that beyond a certain number
of shared channels or thresholds, the throughput eithesrbes stagnant or increases marginally. Also,
given a budget on the amount of bits that can be fedback, we Bhwwn that there exist a trade-off
between the number of shared channels and thresholds amdotieethey must be chosen such that the
throughput is maximized.

Although the results presented here only show the perfocmar the the proposed schemes in the

RBF context, the schemes can easily work with other beanifigrnrmethods.

IX. APPENDIX

COMPRESSIVESENSING
Here, we give the reader a brief introduction about compressensing. Letv € R™ be an unknown
vector, with at most non-zero entriess(< n/2) and letS denote its support set witlf| = s << n.
Suppose that we make a det, . . .,y } of r independent and identically distributed (i.i.d.) obs¢ipres

of the unknown vectowr, each of the form
Yi = aZTV + w; a7

wherew; ~ N (0, N,) is observation noise, ang ~ N (0,1,,%,,) is a measurement vector. In the matrix

form, it can be compactly written as
y=Av+w (18)

Reconstruction will not be possible if the measurement ggeadamages the information ¥y which
often happens in practice. A necessary and sufficient dondior the system of equations to be well-
conditioned (thus having a stable inverse) is tbstricted isometry propertgRIP) [10]- [12].

Definition = A » x n matrix A has thes-RIP with appropriately chosen constanK ¢, < 1 if

2
HAV||2 <1 +€s (19)

1_68 < 2 =
[vI2

holds for all s-sparse vectors.

The s-RIP property ensures that the matAxpreserves the lengths of these particutsparse vectors.
Practical recovery algorithms require thAtsatisfies a more conservative RIBRIP in general [12]).
If A is a random matrix consisting of Gaussian random variakites,RIP property is satisfied with
overwhelming probability [11]. In this case, the number cdanurements that are necessary to recover

v efficiently in a noiseless scenario with high probabilityois the order ofr ~ slog(n/s).
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Protocol of A variance (o) Components
Sharif et. al. [4] Dedicated const. 0 RBF Bl & SINR
Yoo et. al. [5] Dedicated const. 0 ZFBF QCI & SNR/SINR
Kountouris et al. [6]| Dedicated const. 0 RBF (1st stage) Bl & SINR
RBF (2nd stage) BGI
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Tang et. al. [8] Opportunistic| const. 0 SISO case ID
Rajiv et. al. [9] Opportunistic| const. 0 RBF ID
ZFBF ID & QCI
Proposed Opportunistic| CA (0, 1) >0 RBF CQI (Analog Case)
RBF 1 bit (Digital Case)
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