
'

&

$

%

How Much Does Transmit Correlation Affect

the Sum-Rate of MIMO Downlink Channels?

Tareq Y. Al-Naffouri

Electrical Engineering Department

King Fahd University of Petroleum and Minerals

Dhahran, Saudi Arabia

Joint work with Masoud Sharif and Babak Hassibi

1



'

&

$

%

Outline

• Introduction

• Questions of interest in a broadcast scenario

• System model and multiuser scheduling schemes

• Capacity scaling of DPC with channel correlation

• Capacity scaling of beamforming with channel correlation
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Introduction to Broadcast Channels

• Multiple antennas add tremendous value to point to point systems

• Research shifted recently to the role of multiple antennas in

multiuser systems

• Broadcast scenarios (point to multi-point) are especially important

because downlink scheduling is the major bottleneck for broadband

wireless networks
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Three Main Questions in a Broadcast Scenario (1)

Q1) Quantify the maximum sum rate possible to all users

A1) Sum-rate is achieved using dirty paper coding (DPC) (Caire and

Shamai ’02, Viswanath and Tse ’02, Vishwanath et al. ’02, Yu and Cioffi ’02)

(-) DPC is computationally complex at both Tx and Rx

(-) Requires a great deal of Feedback (CSI for all users at Tx)
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Three Main Questions in a Broadcast Scenario (2)

The second question is motivated by the drawbacks of DPC

Q2) Devise computationally efficient algorithms for capturing capacity

A2) Utilize multi-user diversity to achieve performance close to capacity

(+) Opportunist multiple random beamforming coincides

asymptotically with DPC (Sharif and Hassibi ’06)

R = M log log n + M log
P

M
+ o(1)

(+) Requires simply SINR feedback to Tx
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Three Main Questions in a Broadcast Scenario (3)

Q3) With this promising performance, how does opportunist

beam-forming perform under various non-idealities

A3) (i) Time correlation (Kountouris and Gesbert ’05)

(ii) Frequency correlation (Fakhereddin, Sharif, and Hassibi’06)

(iii) Channel estimation error (Vikali, Sharif, and Hassibi ’06)

(iv) Spatial correlation (D. Park and S Y. Park ’05)

Main problem to be addressed:

• For a Gaussian broadcast channel, we would like to quantify the hit

that transmit correlation causes to scaling laws of the sum-rate

capacity. We consider DPC and various beamforming schemes.
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System Model

• Base station with M antennas broadcasting to n single-antenna users

• Received signal at each antenna

Yi =
√

PHiS + Wi, i = 1, . . . , n

with E[S∗S] = 1 and Gaussian noise Wi ∼ CN(0, I)

• Channel Hi of i-th user is 1 × M vector

– Distributed as CN(0, R); R is nonsingular with tr(R) = M

– Known perfectly at receiver

– Follows a bock fading model (with coherence interval T )

– Hi is independent from one user to another
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Digression: Extreme Value Theory

• Let x1, x2, . . . , xn be i.i.d random variables with pdf f(x) and CDF

F (x). How does maxi xi behave?

• Let z denote the limit

z = lim
x→∞

1 − F (x)

f(x)

then, for large n we have with high probability

maxi xi = z log(n)
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Scaling of DPC under Correlation

• Sum-rate capacity of DPC

RDPC = E

(

max
{P1,...,Pn,

P

Pi=P}
log det

 

I +

n
X

i=1

H∗
i PiHi

!)

.

• Define Hi = HwiR
1
2 and employ the inequality det(A) ≤

“

tr(A)
M

”M

to obtain

RDPC ≤ M log

„

1

M
tr(R−1) + max

i
‖Hwi‖2 P

M

«

• For large n, maxi ‖Hwi‖2 behaves as log n with high probability.
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Thus,

RDPC ≤ M log

„

tr(R−1)

M
+

P

M
log n

«

+ log det R

= M log log n + M log

„

P

M

«

+ M log
M
√

det R for large n

• This is also a lower bound as it the scaling of deterministic beam

forming. So, for large n

RDPC = M log log n + M log
`

P
M

´

+ M log
M
√

det R

• Compare with rate for spatially uncorrelated channel

RDPC = M log log n + M log
`

P
M

´

Keep in mind that M
√

R ≤ Tr(R)
M

= 1
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What is Random Beam Forming?

• Choose M random orthonormal vectors φm, m = 1, . . . , M

(according to an isotropic distribution)

• Construct the signal

S(t) =

M
X

m=1

φmsm(t), t = 1, . . . , T

where T is less than the coherence interval of the channel.

• After T channel uses we independently choose another isotropic set

of orthonormal vectors {φm}, and so on. So we are transmitting M

random beams.

• This is a generalization of the scheme “Opportunistic Beamforming”

(Viswanath et al. ’02) in which only one random beam is

transmitted and proportional fairness is guaranteed.
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Exploit Multi-User Diversity

• Each receiver i = 1, . . . , n computes the following M SINRs

SINRi,m =
|Hiφm|2

1/ρ +
P

n6=m |Hiφn|2
, m = 1, . . . , M

and feeds back the best SINR

• Rather than randomly assigning the beams, the transmitter assigns

signal sm to the user with the best SINR for that signal. Therefore

C = E

M
X

m=1

log

„

1 + max
i=1,...,n

SINRi,m

«

• Due to the symmetry of all the random variables involved:

C = ME log

„

1 + max
i=1,...,n

SINRi,1

«
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Other Beamforming Schemes

• Random Beam forming (RBF) S(t) =
PM

m=1 φmsm(t)

• RBF with Channel whitening

S(t) =

M
X

m=1

√
αR−1/2φmsm(t)

• RBF with general precoding

S(t) =
M
X

m=1

√
αAφmsm(t)

• Deterministic beamforming

S(t) =

M
X

m=1

φmsm(t), φm’s are fixed
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How to Determine Scaling of BF Schemes

1. Sum rate

RBF = E

M
X

m=1

log

„

1 + max
i=1,...,n

SINRi,m

«

= ME

„

1 + max
i=1,...,n

SINRi,m

«

2. To calculate expectation, condition on beams

RBF|Φ = MEHi|Φ

„

1 + max
i=1,...,n

SINRi,m

«

• SINRi,m|Φ is iid over i

• Find the distribution of SINRi,m|Φ
• Employ extreme value theory to find maxi=1,...,n SINRi,m

3. Average RBF|Φ over Φ
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Statistics of SINRi,m (White Channel)

• SINRi,m is defined by

SINRi,m =
|Hiφm|2

1/ρ +
P

n6=m |Hiφn|2
, m = 1, . . . , M

• Easy to find distribution of SINRi,m|Φ when Hi is white

f(x) =
e− x

ρ

(1 + x)M

„

1

ρ
(1 + x) + M − 1

«

F (x) = 1 −
e− x

ρ

(1 + x)M

• Finding these statistics in the correlated case is challenging
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Statistics of SINRi,m Given Φ (Correlated Case)

• We can show that the CDF of SINR in the correlated case

F (x) = 1 − 1
2πM det(R)

λM

QM−1
i=1

λiλM

x(λi−λM )
e
− 1

ρ
x

λM

where λ1 ≤ λ2 ≤ · · · ≤ λM are the eigenvalues of the matrix

A = (1 + x)Λ1/2φmφ∗
mΛ1/2 − xΛ ρ =

P

M

Note that eigenvalues are a function of x.

• pdf is given by

f(x) =
1

2πM det(R)
e
− 1

ρ
x

λM

M−1
Y

i=1

λiλM

x(λi − λM )
×

8

<

:

1

ρ

‖qM ‖2
C

λM

− ‖qM‖
2
B −

M
X

i=1

1

λi

λ2
M

‖qi‖
2
C

− λ2
i ‖qM ‖2

C

x(λi − λM )

9

=

;

where B = Λ1/2(φmφ∗
m − I)Λ1/2 C = Λ1/2φmφ∗

mΛ1/2
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Scaling of Maximum SINR

• Can now show

lim
x→∞

1 − F (x)

f(x)
=

P

M

1

‖φm‖2
Λ−1

• Using extreme value theory, we can show that for large n

max
i=1,...,n

SINRi,m =
P

M

1

‖φm‖2
Λ−1

log n

• Conditional sum-rate capacity scales as

RBF|Φ = M log log n + M log
P

M
+ M log

„

1

‖φm‖2
Λ−1

«

• Sum-rate capacity of random beam-forming

RRBF = M log log n + M log P
M

+ MEΦ log

„

1
‖φm‖2

Λ−1

«
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Averaging Over the Random Beams

• Need to obtain CDF of 1
‖φm‖2

Λ−1
which is challenging.

• The CDF of y = 1
‖φ‖2

Λ−1
is given by

G(x) = Pr( 1
‖φ‖2

Λ−1
< x) = 1 −Pi ηi

“

1
x
− 1

λi(Λ)

”M−1

u
“

1 − x
λi(Λ)

”

where ηi = 1
Q

j 6=i(
1

λj(Λ)
− 1

λi(Λ)
)

• Use CDF to show that

RRBF = M log log n + M log
P

M
+

log λ1(Λ) +

M
X

i=1

ηi log

„

λi

λ1

«M−1
X

k=1

1

k + 2
(
−1

λi
)M−1−k 1

yk+2

˛

˛

˛

˛

λi

λ1
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Sum rate of Deterministic Beam Forming

• Sum-rate of deterministic beam forming

RBF−D = M log log n + M log
P

M
+

M
X

i=1

log

„

1

φ∗
i U∗Λ−1Uφi

«

U∗Λ−1U is the eigenvalue decomposition of R−1

• Special case: Uφi’s are the columns of identity matrix

RBF−D = M log log n + M log P
M

+ M log M
√

det R

Since tr(R) = M , the geometric mean satisfies det(R) ≤ 1

• Scaling coincides with (D. Park and S Y. Park ’05) which focused on the M

= 2 case
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Sum rate of RBF with Channel Whitening

• For random beam forming with channel whitening,

S(t) =
M
X

m=1

√
αR−1/2φmsm(t)

• Set α = tr(R−1)
M

to guarantee E[S∗S] ≤ 1

• Scaling becomes the same as for white channel case with reduced

signal power

RBF−W = M log log n + M log P
M

+ M log M
tr(R−1)
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Simulations

• Consider a base station with M = 2 and M = 3 antennas

• The corresponding correlation matrix is

R =

2

4

1 α

α 1

3

5

R =

2

6

6

4

1 α α2

α 1 α

α2 α 1

3

7

7

5
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Figure 1: Sum-rate loss versus the correlation factor α for a system

with M = 2 and n = 100.
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Figure 2: Sum-rate versus the correlation factor α for a system with

M = 2, P = 10, and n = 100.
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Figure 3: Sum-rate loss versus the correlation factor α for a system

with M = 3 and n = 100.
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Figure 4: Sum-rate versus the number of users in a system with

M = 2 and α = 0.5
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Conclusion

• Studied the effect of spatial correlation on various multiuser schemes

for MIMO broadcast channels.

• Considered DPC and random, deterministic, and channel whitening

schemes.

• All these techniques exhibit the same scaling for iid channels

Rsum−rate = M log log n + M log P
M

• In the presence of correlation between transmit antennas, scaling is

Rsum−rate = M log log n + M log P
M

+ M log c

The constant 0 < c ≤ 1 depends on the scheduling scheme and the

eigenvalues of the correlation matrix R.
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Recent Results:

Scaling Laws of Group Broadcast Channels

• K groups of users

• Each group of users is interested in the same data

• Worst user of each group is the bottle neck

• Worst user is difficult to define in the multi-antenna case

• For K groups with n users each, we show that capacity scales like

C = K P

n
1

M

• We show that to have a constant rate, M should grow at least as

fast as log n

• This is a joint work with Amir Dana and Babak Hassibi, Cal Tech.
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Extra Slide: Finding the Distribution of SINR

• Consider the SINR for the first beam

SINRi,1 =
|Hiφ1|2

1/ρ +
PM

n=2 |Hiφn|2
,

• Define S by

S = −x

ρ
+ H∗

i ((1 + x)φ1φ
∗
1 − xI)Hi

Then

P (SINRi,1 > x) = P (S > 0) =

Z ∞

−∞

P (Hi)u(S)dHi

=
1

πM det(R)

Z ∞

−∞

e−H∗
i R−1Hiu(S)dHi

• To evaluate integral, use the integral representation of unit step

u(S) =
1

2π

Z ∞

−∞

e(jω+β)S

jω + β
dω
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• Desired probability becomes

P ( SINRi,1 > x)

=
1

2πM+1 det(R)

Z ∞

−∞

dω
1

jω + β

Z ∞

−∞

dHie
(jω+β)S−H∗

i R−1Hi

=
1

2πM+1 det(R)

Z ∞

−∞

dω
e−(jω+β) x

ρ

jω + β

Z ∞

−∞

dHie
−H∗

i R̃−1Hi

=
1

2πM+1 det(R)

Z ∞

−∞

dω
e
−(jω+β) x

ρ

jω + β

1

det(R̃)
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