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Abstract— When a sequence of symbols is 

transmitted in a communication system, they are usually 

detected at the receiver symbol by symbol (i.e. independently). 

This is not always the optimal solution and therefore there is a 

need to detect the complete sequence as a whole. This is 

usually done using what is called Maximum Likelihood 

Sequence Detection (MLSD) in AWGN Channels by using 

the Viterbi Algorithm (VA). 

The scope of this work is to present the MLSD 

method based on the VA, which eliminates signal sequences 

as new data are received from the demodulator. We start 

providing a brief introduction of the topic, continued by the 

explanation of the VA followed by a real-life implementation 

and concluding with the explanation of the MLSD. Some 

examples will be provided in order to achieve a deeper 

understanding of the topic. 
 

Keywords— Markov Chain, State Diagram, Viterbi Algorithm, 

Baye’s Rule. 
 

I. INTRODUCTION 

      In the early days of trellis coding/decoding, channel 

symbols were modeled as numbers from a finite field and the 

channel described as a discrete memoryless channel (DMC). 

The decoding problem was attacked by heuristic methods at 

that time. 

 

The first approach was taken by Viterbi who formulated a 

dynamic programming algorithm for decoding of 

convolutional codes. Later on it was found that the algorithm 

actually performs maximum likelihood sequence detection 

(MLSD) of the states the sequential machine is traversing. 

This famous procedure is known as the Viterbi Algorithm 

(VA) and has had a tremendous impact on both digital 

transmission theory and application 

 

The Viterbi algorithm is used to find the most likely noiseless 

sequence of finite-state signals generated from a state diagram 

corrupted by noise. It searches for the least branch metric 

(Euclidean or Hamming distance) between the noisy received 

sequence and the original transmitted signal, which is called 

the survivor path of a certain state. When Euclidean distance 

is used as the metric, the VA is the optimal MLD method in 

AWGN since it is the least complex. 

 

Two tools can be used on the MLSD algorithm; one is the 

Viterbi algorithm and the Markov Chain. The Viterbi 

algorithm is an efficient technique for solving the minimum-

distance sequence detection for any Markov signal generator 

and any noise generator with independent noise components. 
 

 

 

 

 

 

 

II. THE VITERBI ALGORITHM 
 

A. Viterbi Algorithm (VA) - Background 

 

 It is an algorithm implemented using dynamic 

programming to detect and estimate sequence of symbols in 

digital communication and signal processing by finding the 

most likely noiseless sequence. This algorithm also is used for 

speech recognition for speech symbols modeled by hidden 

Markov models. For detection using Viterbi Algorithm, the 

signals are generated from finite state diagram. The initial 

state is determined and the input decides to which state the 

transition will proceed.  

 
In the figure shown above the initial state is 1 and input is -1, 

then the next state is -1 and the output is zero. 

The Trellis is an indexed time diagram is used to represent the 

finite state diagram to make the inputs and outputs clearer. An 

example of trellis is the one that represent the state diagram 

below: 

 

B. Viterbi Algorithm (VA) - Description 
 

    The Algorithm is optimal in maximum likelihood sequence 

detection for symbols affected by additive white Gaussian 

noise AWGN. It is based on the principal of finding a 

noiseless output sequence with minimum distance from the 

detected noisy sequence of symbols. Viterbi is the best 

algorithm if Euclidean distance is used which is not always 

the case in practice.  
 

 

A way to find the MLS 
 

The VA calculates recursively the survivor path for each 

state in the state diagram. The survivor path is input sequence 

for each state that is the closest to the detected noisy sequence 

of each state. After VA has found all the survivor paths, it will 
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compare the path metric for them. The path metric is the 

distance between the survivor path and the detected noisy 

sequence. The path with minimum metric will be chosen to be 

the globally detected path. For example, if x1, x2, x3…xn are 

the noisy detected sequence, VA will compute the survivor 

path for each state based on its metrics at each recursion and 

update the metrics of the survivor path. The metric of a path 

coming into state is calculated by adding all branch metrics in 

that path. The branch metric is the distance between the noisy 

symbol Xn and the maximum likelihood symbol in the ideal 

sequence. Assume there are two states i and j: the branch 

metric at stage n is equal to Bi,j,n = (Xn – Ci,j)
2
  where Ci,j is the 

output of the transition from state I to j.   

     The survivor path for state j at stage n is equal to: Mj,n = 

min[Mi,n-1 + Bi,j,n] for all states I that have transitions to state j. 

After all the stages when the survivor path for state j has been 

calculated and the path metrics have been updated for all 

states, the survivor path with minimum metrics is selected to 

be the most likely path and this path can be traced from its 

state backwards. However, the number of recursion will go to 

infinity since the noisy symbols will not stop entering to the 

states. So an infinite amount of time is needed to recover the 

detected sequence. The solution for that is convergence of all 

the survivor paths for all states to the minimum metric path. 

Thus, all states will have the identical survivor path sequence 

prior to stage n. Therefore, we can trace back from any state 

and obtain the most likely sequence up to stage n. The number 

of recursion required to implement VA is called survivor path 

length L. 

At each recursion, there are three main steps that must be done 

to achieve VA: 
 

 Branch Metric Generation:  This step is to calculate the 

metrics for all the transitions that enter each state. 

 Survivor path and path metrics update: The branch metrics 

are added for each state with the previous path metrics. Then, 

the path with minimum sum is selected to be the survivor path 

for that state. 

 Most likely path traced back: the survivor path for a given 

state is traced back l stages to determine the most likely 

symbols in the sequence. 

 

C. Example: MLSD using VA 

Using the trellis form the figure below, if the received noisy 

sequence is Xn= (0.05, 2.05, -1.05, -2.00, -0.05). The first step 

at stage 1 is to calculate the branch metrics: (5 stages needed) 

B1,1,1 = (X1 – C1,1)2= (0.05 -2)2= 3.8025 

B-1,-1,1 = (X1 -C-1,-1)2 =(0.05+2)2 =4.2025 

B1,-1,1 =  B-1,1,1 =(0.05)2 =0.0025 

The second step is to update the survivor path for each sate 

and survivor metrics: 

From the trellis, there are two possible transitions to each state 

so i=2. At the beginning, we assume that at the beginning of 

the recursions, all the path metrics are zero M1,0 = M-1,0 = 0). 

Thus, for state 1 at recursion 1 

 

M1,1= min[Mi,0+Bi,1] 

([M1,0 + B1,1] = 3.8025) > ([M-1,0 + B-1,1]=0+0.0025) 

 

So the survivor path for state 1 is the transition from state -1 

to state 1. Similarly the survivor path for state -1 is calculated. 

After 5 recursions, the received sequence will have 5 survivor 

paths which could be traced back to find the maximum 

likelihood sequence that represents the noisy symbols as 

shown in the figure below: 

 

 

D. Real Time implementation of VA 
 

      The implementation of VA varies from one type of coding 

and the other and between trellis and other. It is usually 

implemented for convolutional codes and trellis codes which 

called sequential codes. VA is optimal for AWGN channels. 

 

Branch metrics for convolutional codes 
 

In Convolutional-Codes, the input and outputs are binary 

digits with N states and 2^k transitions for each state. If n bits 

code is sent in an AWGN channel, the corrupted received 

waveforms are quantized into m-bits symbol per transmitted 

bit. The quantized symbols then are sent to Viterbi decoder to 

calculate the branch metrics for each state. The implemented 

VA has two kinds of decision decoding: 

 

 Hard Decision Decoding 
 

The branch metric here is calculated based on hamming 

distance which is the number of bits that are different in the 

quantized sequence and the coded bit sequence of transition. 

 

 Soft Decision Decoding 
 

In this decoding no quantization is used to keep the 

content of the noisy symbols. The branch metrics are 

calculated using Euclidean distance between the noisy 

symbols and the coded bits of the given transition. 

 

Branch metrics for Trellis Codes 
 

Trellis are characterized as multi-dimensional which 

means that each codeword of a given transition consists of 

more than codeword. To find the branch metrics, the closest 



codeword in distance to the received noisy symbol should be 

selected to calculate the branch metric. The squared distance 

between this codeword and the received noisy symbol is the 

branch metric of the transition. After that the same procedure 

explained above is followed to find the maximum likelihood 

sequence. 
 

III.  MARKOV CHAIN MODEL IN MLSD FOR FREE-SPACE 

OPTICAL COMMUNICATION IN ATMOSPHERIC TURBULENCE 

CHANNELS 
 

In the optical communication environment, the transmitted 

signals suffer from signal fading as a result of the atmospheric 

turbulences. Consequently, this makes the signal aperture D0 

less than the correlation length of the fading signal d0. A 

maximum likelihood sequence detection MLSD is proposed 

based on the statistical properties of the turbulences and 

signals fading. However, this MLSD is very complicated to 

find since it requires multidimensional integration. A less 

complexity MLSD algorithm is derived based on single step 

Markov Chain model for fading correlation. 

   
 

A. MLSD for Binary system 
 

This MLSD is optimal for decoding i.i.d uniform 

sequence of bits but it has high complexity which is n. 2
n
 

because it requires computing an n-dimensional integral for 

each of 2
n
 bit sequences. Assume the 2^n possible bit 

sequence S= {s1,s2…..Sn}, the received sequence R={r1…..Rn} 

so the MLSD= S’= ArgMax. 
 

 
 

B. MLSD based on SMC fading correlation using PSP 
 

The idea is to use the correlation between 

consecutive received ON bits to perform MLSD with a 

modification on the metric function. This MLSD technique is 

better than the previous in terms of complexity which is n
2
 

here. 

Assume the transmitted sequence S= {s1…..sn} and ON bits 

symbols SON= {ni=(1,2,3…n) Sn=1} i=1 to m, OFF bits 

sequence SOFF= {ni=(1,2,3…n) Sn=0} i=1to n-m 

The likelihood function is: 

  

 
Based on the SMC model: 

 
By decoupling the integral: 
 

 
 

The branch metrics can be found as follows: 
 

 
In terms of branch metrics MLSD can be expressed as: 
 

 
* Note: the MLSD is the product of the branch metrics 
 

 

C. MLSD based on SMC fading temporal correlation using 

Viterbi Algorithm 
 

This MLSD has the least complexity which is n^2/2 since it 

requires only 2D integration. If the most recent bit is ON, the 

computation of branch metric is easy since only one survivor 

path. Otherwise we must keep track of all survivor paths 

whose last bit is OFF. The non survivor paths can only be 

eliminated if the most recent bit is ON. The complexity can be 

reduced further by making the first and last bit of each 

sequence to be ON. The disadvantage of this technique is that 

a large size memory is needed to keep track of the survivor 

path information and some bit overhead is required for the 

implementation of this algorithm. 

 

IV. MLSD ALGORITHM 
 

      Modulation systems with memory can be modeled as 

finite-state machines that might be represented by a trellis. If 

it is assumed that the transmitted signal has duration of K 

symbol intervals, each path of length K through the trellis a 

message signal.  

 

The number of messages in this case is equal to the number of 

paths through the trellis, and a Maximum Likelihood 

Sequence Detection (MLSD) algorithm selects the most likely 

path or sequence corresponding to the received signal r(t) 

over the K signaling interval.  

 



As it has been handled ML detection selects a path of K 

signals through the trellis by minimizing the Euclidean 

distance between that path and r(t). Noting that since 

 
 

  𝑟 𝑡 − 𝑠 𝑡  2𝑑𝑡 =      𝑟 𝑡 − 𝑠 𝑡  2𝑑𝑡
𝐾𝑇𝑠
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The optimal detection rule becomes: 
 

 
 

 𝑠  1 , 𝑠  1 , …𝑠  𝐾  = 𝐴𝑟𝑔𝑀𝑖𝑛 𝑠  1 ,𝑠  1 ,…𝑠  𝐾  𝜖𝛾    𝑟 𝐾 − 𝑠 𝐾   
2

=𝐾
𝐾=1  

 
 

 

𝐴𝑟𝑔𝑀𝑖𝑛 𝑠  1 ,𝑠  1 ,…𝑠  𝐾  𝜖𝛾  𝐷 𝑟 𝐾 , 𝑠 𝐾    𝐾
𝐾=1     ;   where 𝛾 is the trellis 

 

As an example of the algorithm consider the NRZI signal 

characterized by the trellis in the figure below. The signal 

transmitted in each interval is binary PAM, and therefore are 

two possible transmitted signals corresponding to the points 

S1 = -S2 = 𝜀𝑏 , where 𝜀𝑏  is the energy per bit. 
 

 
NRZI 

 

Now it is needed to calculate the Euclidean distance for all 

possible sequences. For NRZI based on binary modulation 

with 2
k
 sequences we can reduce the number of sequences in 

the trellis search by using the Viterbi algorithm to eliminate 

sequences as new data are received.  

 
The Viterbi algorithm is seen as a sequential trellis search 

algorithm for ML sequence detection. It is assumed that that 

the search process begins initially at state S0. Then, at time 

t=T, we receive r1 = S1
(m)

+ n1 from the demodulator, and at 

time t=2T it is received r2 = S2
(m )

+ n2 and so on. Since the 

signal memory is 1 bit (L=1) it can be observed that the trellis 

reaches its regular (steady-state) after two transitions. After 

the reception of r2  at t=2T and onwards it is observed that 

there are two signal paths entering and two signal paths 

leaving at each node. The two paths entering node S0 at t=2T 

correspond to bits (0,0) & (1,1) or seen as signal points 

(− 𝜀𝑏 ,− 𝜀𝑏 ) & ( 𝜀𝑏 ,− 𝜀𝑏 ). Respectively in node S1 at 

t=2T we have (0,1) & (1,0) or (− 𝜀𝑏 ,  𝜀𝑏) & ( 𝜀𝑏 , 𝜀𝑏) as it 

is shown below:  

 
 

For the two paths entering node S0 the Euclidean distance 

metrics are calculated as follows by using the outputs 𝑟1 and 

𝑟2 from the demodulator: 

D0(0,0) =  𝑟1 +  𝜀𝑏 
2
 +  𝑟2 +  𝜀𝑏 

2
 

D0(1,1) =  𝑟1 −  𝜀𝑏 
2
 +  𝑟2 +  𝜀𝑏 

2
 

 

The Viterbi algorithm then compares these two metrics and 

discards the path with the largest (distance) metric and the 

other path (so called the survivor) is saved at t=2T. The 

elimination of one of the two paths does not compromise the 

optimality of the Trellis search, because any extension of the 

path with the larger distance beyond t=2T will always have a 

larger metric than the survivor that is extend along the same 

path beyond t=2T. 
 

The Euclidean distances of the two paths entering at node S1 at 

t=2T are: 

D1(0,1) =  𝑟1 +  𝜀𝑏 
2
 +  𝑟2 −  𝜀𝑏 

2
 

D1(1,0) =  𝑟1 −  𝜀𝑏 
2
 +  𝑟2 −  𝜀𝑏 

2
 

 

by using the outputs r1 and r2 from the demodulator. 

 

The two metrics are compared and the signal path with the 

larger metric is eliminated. This leaves two survivor paths at 

t=2T, one at node S0 and the other at S1 with their metrics. The 

signal paths are extended along the two survivors (D0(1,1) & 

D1(1,0)), and upon the reception of r3 at T=3T the paths (1,1) 

at S0 and (1,0) at S1. Thus the two metrics for the paths 

entering S0 are: 
 

D0(1,1,0) = D0(1,1)+  𝑟3 +  𝜀𝑏 
2
 

D0(1,0,1) = D1(1,0)+  𝑟3 +  𝜀𝑏 
2
 

 

These two metrics are compared, and the path with the larger 

distance metric is eliminated. Similarly for the two paths 

entering S1 at t=3T are: 

D1(1,1,1) = D0(1,1)+  𝑟3 −  𝜀𝑏 
2
 

D1(1,0,0) = D1(1,0)+  𝑟3 −  𝜀𝑏 
2
 

 

Again the two metrics are compared and the one with greater 

distance is eliminated. This process is continued as a new 

signal sample is received from the demodulator.  

The VA computes two metrics for the two paths entering a 

node at each node and the two survivors are extended to the 

next state. Therefore the number of paths searched in the 

trellis is reduced by a factor of 2 at each stage.  
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As a second example, in order to extend the trellis search of 

the VA for M-ary modulation consider a system employing 

M=4 signals, characterized by the four-state trellis shown in 

the figure below where two signal paths enter and other two 

leave each node. Therefore the VA will have four survivors at 

each stage and their corresponding metrics. 

Two metrics corresponding to the two paths computed at each 

node, and one of the two signal paths entering the node is 

eliminated at each stage of the trellis. Thus, the VA minimizes 

the number of trellis paths searched in performing MLSD. 

 

If we had advanced to a stage K, where K>>L in the trellis, 

and we compare the surviving sequences they will be identical 

in bit or symbol position K-5L and less. In practical 

implementation of the VA, decisions on each information bit 

(or symbol) are delayed 5L bits (or symbols). Thus, a variable 

delay in bit or symbol detection is avoided, and the loss in 

performance from the optimum detection procedure is 

negligible if delay is at least 5L. This approach of the VA is 

called Path Memory Truncation. 

 
One-stage Trellis diagram for delay modulation 

 

 

V. CONCLUSION 

The MLSD is a powerful way for sequence detection 

at the receiver compared to bit by bit detection. The VA, a 

widely used tool for sequence detection was explained in 

order to provide a background and a better understanding 

of the presented topic.  

 

The MLSD algorithm finds the ML sequence in a 

recursive way to find the survivor path for each state and 

in turn the complete sequence is detected. The other 

algorithm stated for maximum likelihood sequence 

detection was based on single step Markov-Chain can be 

implemented to find MLSD if the temporal correlation of 

fading is known. Two sub optimal schemes were derived 

based on that. When the VA is merged with the second sub 

optimal scheme, it gave the lowest possible complexity 

which is n
2
/2. 

. 
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