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AbstractAbstractAbstractAbstract    
Polar Codes, a coding scheme introduced by Arikan, are the first 
family of codes known to achieve the symmetric capacity of any 
given binary-input discrete memoryless channel (B-DMC) W by 
using a low-complexity successive cancellation (SC) decoder. By 
recursively combining and splitting the independent B-DMCs, 
some of these polarized channels become error-free or noiseless 
to achieve the symmetric capacity '(W) , while others are 
completely noise approach ( ) '(W). The polarized channels 
are well-conditioned for channel coding such that, we just need 
to send the information bits through these noiseless channels at 
rate ( and fixed symbols through the noisy channels at rate 0. 
Based on the phenomenon of channel polarization, we can 
construct the polar codes with the block-length N in powers of 2 
at a rate higher than the target rate / 0  '(W). The probability 
of block error will be bounded by P1 2 3(N456) independent of the code rate with the coding and decoding complexity 
3(NlogN) for each. 
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'.'.'.'. 'ntroduction'ntroduction'ntroduction'ntroduction    Polar codes, a coding scheme that was first introduced by Arikan 
in [(], can achieve the Shannon capacity of arbitrary symmetric 
B-DMC W under low encoding and decoding complexity. The 
main idea of polar codes is based on the phenomenon of 
“channel polarization”. More precisely, by recursively combining 
and splitting individual channels, some of these channels 
become essentially error-free, while others become completely 
noise. Further, the fraction of the noiseless channels tends to the 
capacity of the underlying binary symmetric channels.  
The element for channel polarization is a B-DMC W< = > ? with 
input = 2 @0, (A , output ? and the transition probabilities 
P(yBx). Now we can define the mutual information between the 
input = and output ? as< 

'(=C ?) D E E P(x)P(yBx)log P(yBx)F P(x)W(yBx)GHIGHIJHK      (() 
The Shannon capacity gives the maximum value of mutual 
information given any input, so< C 2 max @'(=C ?)A. 
3n the other hand, when =2@0, (A are transmitted with equal 
probability, which means P(0)2P(()2MN, we get the symmetric 
capacity of the channel as< 

        '(W) D E E (2 P(yBx)log P(yBx)F (2 P(yBx)GHIGHIJHK             (2) 
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The symmetric capacity '(W) is equal to Shannon capacity C 
under the condition that the B-DMC is symmetric, i.e. the rows of 
the channel matrix are permutation of a probability set and the 
columns are the same, such as< 

P(?B=) 2 O(PQ (PQ (PR (PR(PR (PR (PQ (PQS 
The rows of the channel matrix are permutation of @(PQ, (PQ, 
(PR, (PRA, and the columns are permutation of @(PQ, (PRA. 
Channel polarization synthesizes a set of N binary-input 
channels @WTU A out of N independent copies of the symmetric 
B-DMC W with the block length N in powers of 2. As N grows 
large, the channels seen by individual bits start polarizing, i.e. 
they either approach a noiseless channel or a pure-noise channel. 
The channel polarization phenomenon suggests us to use the 
noiseless channels for transmitting information while fixing the 
symbols transmitted through the noisy ones to a value known 
both to sender as well as receiver. 
Polar codes are constructed over the binary field GF(2) with the 
generator matrix GT  directly obtained from the process of 
channel combining. With the input bits xMT, we get the codeword 
uMT 2 xMTGT as a linear transformation. At the receiver, the SC 
decoder will do the decoding work with the block error 
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probability bounded by 3(N456), and a complexity of 3(NlogN) is achievable both for encoding and decoding with sufficiently 
large N [(]. 
This paper is organized as follows< Section 2 will focus on 
channel polarization, which includes channel combining and 
channel splitting. Based on channel polarization, section Q will 
discuss on the encoding and decoding of polar codes, and then 
briefly analyses the performance of the polar codes under 
successive cancellation (SC) decoding. And finally Section 4 will 
draw some significant conclusions and discussions. 
 ''.''.''.''. Channel PolarizationChannel PolarizationChannel PolarizationChannel Polarization    
Channel Polarization is defined as an operation that converts N 
independent copies of a given B-DMC W into another set of N 
channels @WTU < ( 0 i 0 N A, called polarized channel set. The 
channel set @WTU A polarize in the sense that, as N goes to infinity 
in powers of 2, the channel capacity '(WTU ) approach '(W) for 
the indices i H S, and ( ) '(W) for the indices i X S, where S Y
@(, 2,Q ZZZZZZ NA is the information set. Generally, the process of 
channel polarization can be divided into two parts namely 
channel combining and channel splitting. 
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A.A.A.A. Channel CombiningChannel CombiningChannel CombiningChannel Combining    
'n channel combining, the N independent copies of B-DMC W are 
combined into an interim channel WT< =T > ?T in a recursive 
manner with the transition probability< 

               PT(yMT[xMT) 2 PT(yMT[xMTGT)                              (Q) 
where GT is the generator matrix, and the general form [2] is< 
 

 When n 2 0 then N 2 2\ 2 (, we define WM 2 W.  
When n 2 ( then N 2 2\ 2 2, we construct WN< =N > ?N in the 
following way<  
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 From the construction we can get< 
PN(yMNBxMN) 2 P(yMBxM]xN)P(yNBxN) 2 PN(yMNBxMNGN) 

With the generator matrix given by GN 2 ^( 0( (_. 
When n 2 2 then N 2 2\ 2 4, we construct W`< =` > ?` in a 
recursive way from WN< 



9 

 

'n the above figure, /` is the permutation operation that maps 
the indices of one set @(, 2,Q, 4A to another set @(, Q, 2, 4A. 
'n the same way from the construction, we can get< 

P̀ (yM̀ BxM̀) 2 PN(yMNBxM]xN, xa]x`)PN(yàBxN, x`) 2 P`(yM̀ BxM̀G`) 
With the generator matrix given by G` 2 b( 0( 0( (

0 0( 00 0( ( ( 0c. 
Then generally for any n>0, WT can be constructed from WTPN 
in the same way of constructing W` from WN< 
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The permutation operation /T  just maps the indices of the 
set @(, 2,Q ZZZZZZ NA to @(, Q ZZZ N ) (, 2, 4 ZZZ NA. 
From the recursive process of constructing WT from WTPN, we 
can get the relationship of the generator matrix GT and GTPN as< 

                    GT 2 e'TN f Gg /T e'N f GTN g                    (4) 
where 'h is the k�k identity matrix and f is the Kronecker 
product defined as follows< 
Kronecker product of two matrix A 2 [aUj]kl\ and Bmln is< 

AoB 2 paMMB q aM\Br s ra\MB q a\\Bt
kml\n

 
By some algebraic calculations, we get< 

('TPN f G)/T 2 /T('N f GTPN) 
then we can write GT in a simpler way< 

                    GT 2 /T e'TN f Gg e'N f GTN g                   (u) 
With this form, we can get an alternative realization of the 
recursive construction of GT< 
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 Actually, the transform 'TPN f G and /T are linear, so by just 
changing the order of them, we can easily get the Fig.4 of WT 
from Fig.Q. 

B.B.B.B. Channel splittingChannel splittingChannel splittingChannel splitting    
'n the first phase, we combined N independent copies of B-DMC 
W into the channel WT< =T > ?T. 'n this phase we will split 
WT< =T > ?T  into the polarized channel set @WTU <( 0 i 0 NA 
with the transition probabilities defined as follows< 
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            PTU vyMT, xMU4M[xUw D E (2T4M PT(yMT[xMT)
G5xy5             (R) 

After splitting, the single channel WTU  in the set has input xU 
and output (yMT, xMU4M) with the form< WTU < = > ?T l =U4M. 
First we consider the situation of N22 with WN< =N > ?N. The 
mutual information can be obtained from the definition (()< 

'(xMNC  yMN) 2 '(uMNC  yMN) 2 2'(W) 
Then we split it into two parts< 

'(xMNC  yMN) 2 '(xNC  yMN) z '(xNC  yMNBxM) 2 '(xMC  yMN) z '(xNC  yMN, xM) 
We interpret the first part '(xMC  yMN) as the mutual information 
of the channel between xM and yMN, with xN considered as noise, 
which we denote as WNM. The second part '(xNC  yMN, xM) can be 
denoted as the mutual information of the channel between 
xN and yMN, xM , which we denote as WNN  [Q]. The transition 
probabilities of the splitted channels are given as< 

{|}
|~PNM(yMNBxM) 2 E (2 PN(yMNBxMN)G5

2 E (2 P(yMBxM]xN)P(yNBxN)G5PNN(yMN, xMBxN) 2 (2 PN(yMNBxMN) 2 (2 P(yMBxM]xN)P(yNBxN)
� 

By this, we split the channel WN into the channel set @WNM, WNNA. 
As xN is considered as noise, the WNM is set to be the error-free 
channel while WNN is noisy. 
When we consider the situation of N 2 2\ , we can do the 
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splitting with the probability transition given by (R). 
 '''.'''.'''.'''. Polar CodesPolar CodesPolar CodesPolar Codes    
The channel polarization phenomenon suggests that we can use 
the noiseless channels whose  '(WTU )  is near the symmetric 
capacity '(W) to transmit the information and fix the symbols 
transmitted in the noise channels whose '(WTU ) is near 0.  

A.A.A.A. Polar CodingPolar CodingPolar CodingPolar Coding    
The polar codes are constructed by the generator matrix< 

uMT 2 xMTGT 
By selecting the information set S Y @(, 2,Q ZZZZZZ NA, we can write 
it in the following way< 

                        uMT 2 x�GT(S)]x��GT(S�)                      (�) 
Where GT(S) denotes the submatrix of GT formed by the rows 
with the indices in S. 
Example, for N24, S 2 @2,4A, x�� 2 ((, 0), then< 

uMN 2 (xN, x`) ^( 0 ( 0( ( ( (_ ]((, 0) ^( 0 0 0( ( 0 0_ 
By denoting K2BSB, the polar codes can be identified by (N, K, S, 
x��) with code rate KPN. 
Since K and N are fixed, the next step is to determine S and x�� . 
Usually, the indices of S are chosen as a K-element subset of @(, 2, 
QZZZZZZ NA such that< 
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'vWTU w � 'vWTj w, for all i H S and j H S�              
'n this way, polar codes are channel-specific design such that 
different channel W will give rise to different polar codes. 
Here x�� , which is transmitted in the pure-noise channel and 
referred to as frozen bits, can be chosen at will. Actually, any 
choice for x��  will give rise to the same performance.  

B.B.B.B. Successive Cancellation DecodingSuccessive Cancellation DecodingSuccessive Cancellation DecodingSuccessive Cancellation Decoding    
Considering the following channel model< 

 The input bits xMT are encoded into the polar codeword uMT, 
then transmitted in the channel WT. The output yMT are first 
received and then decoded into x�MT. The task of decoder is to 
make an estimation x�MT of xMT from yMT. 
Since the frozen bits x��  are chosen beforehand and contains no 
information, we can set x��� 2 x�� , and use the ML rule to make 
the decision< 

                     x�U 2 �xU                          if i H SdUvyMT, xMU4Mw       if i X S�                     (�) 
Where< 



15 

 

   dUvyMT, xMU4Mw 2
{|}
|~ 0          if PTU vyMT, xMU4M[0wPTU vyMT, xMU4M[(w � (

(           if PTU vyMT, xMU4M[0wPTU vyMT, xMU4M[(w 0 (�          (�) 
This algorithm is called successive cancellation decoding which 
is based on the channel splitting. Just as its name implies, we 
need the output yMT and the previous estimation value x�MU4M to 
make the current estimation value of x�U. We denote P1 as the probability of block error for a (N, K, S, xn�) 
polar code. Assuming that each data xn  is sent with the 
probability of MN�, the P1 can be calculated as< 

                  P1 2 (2�  E E PT(yMT[xMT)
G�5� � G5�G�

                    ((0) 
't is very difficult to calculate explicitly, but we can get an 
estimation of it as P1 2 3(N456). Another important parameter for performance is the complexity. 
From the process of encoding and decoding, we can simply 
figure out that the complexity for encoding and SC decoding are 
both 3(NlogN) as functions of block-length N. 
 'V.'V.'V.'V. Conclusion and DiscussionConclusion and DiscussionConclusion and DiscussionConclusion and Discussion    
By combining and splitting the N independent copies of B-DMCs, 
we can get a set of polarized channels, some of which are 
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noiseless and others are pure-noise. By sending the information 
bits only through these noiseless channels while fixing the 
symbols transmitted through the pure-noise ones, the Shannon 
capacity of the symmetric B-DMC can be achieved.  
Polar codes, based on the phenomenon of channel polarization, 
are capacity-achieving for any symmetric B-DMC with low 
encoding and decoding complexity 3(NlogN). By selecting the 
set S of information-bit indices and the frozen bits freely, we can 
make encoding with the generator matrix GT, which can be 
drawn directly from the process of channel combining. But what 
we must pay attention to is that the polar coding is 
channel-specific design and different B-DMC W will give rise to 
different polar codes. Meanwhile, the bit one-by-one decoding 
algorithm called successive cancellation is drawn from the 
process of channel splitting. Although the explicit form of 
block-error probability P1 is difficult to get, it is easy to make an 
estimation as P1 2 3(N456). Usually the block length N is in powers of 2, but when N goes to a 
power of any other number such as l, then N 2 l\. 'n this case 
we can still use the Arikan’s rule to make polar codes with the 
polarizing matrix G, which is a l�l matrix and has the same form 
with the G mentioned above. What is more is when the 
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block-length N equals to � lU\U�M , then the polar codes can still be 
constructed from the generating matrix of the form fU GU , 
where each GU  is a polarizing matrix of size lU�lU  [4]. The 
encoding and decoding complexities are also given by 3(NlogN).  
Further, although originally introduced for channel coding, polar 
codes are equally useful for source coding applications, such as 
lossless and lossy compression. 'n addition to that, it is also 
optimal for multi-terminal problems, such as Wyner-Ziv and 
Gelfand-Pinsker problem [u].   
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V.V.V.V. SimulationSimulationSimulationSimulation    We did a simulation of generating matrix GT with Matlab. By 
inputting the exponent n of the block length N 2 2\, we can get 
the generating matrix GT by the function of “Generating”, which 
will call the function of “Kronecker” to get the Kronecker 
product of tow matrix. 
 
Function “Generating”< 

  
Function “Kronecker”< 
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