KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS ELECTRICAL ENGINEERING DEPARTMENT Fall 2012

EE 242/571 Digital Communications and Coding

Homework 3 (due Nov 10, 2012)

Note: Make sure that you understand the notes of 'Lempel-Ziv coding' uploaded on the course webpage.

- 1. Consider the following two 4-PAM constellations
 - (a) Equi-distance PAM (Fig. 1) and (b) Variable distance PAM (Fig. 2)

Figure 1: Variable distance PAM

Figure 2: Equi-distance PAM

- i. Evaluate the probability of symbol error for both in terms of the average energy of the constellation.
- ii. Plot the probability of error vs. E_b/N_0 for the constellations.
- iii. Which one shows a better performance? Can you explain why?
- 2. Solve Problem 4.8 from Proakis.
- 3. Consider the signal set shown in the following figure (Fig. 3) with an AWGN channel and let $\sigma^2 = 0.1$.
 - i. Does P_e depend on L and θ ?
 - ii. Find the nearest neighbor union bound on P_e for the ML detector assuming $p_x(i) = \frac{1}{9} \forall i$.
 - iii. Find P_e exactly using the assumptions of the previous part. How far off was the NNUB?

iv. Suppose we have a minimum energy constraint on the signal constellation. How would we change the constellation of this problem without changing the P_e ? How does θ affect the constellation energy?

Figure 3: Constellation for Q5.