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Removal of the Finite-Distance 
Source Effect on the Applebaum Array 

Ahmed Yamani, Member, IEEE, and Madina Hamiane 

Abstract-The effect of a finite-distance signal source on the 
performance of an Applebaum array has been studied extensively 
in the literature. It has been concluded that unless the Applebaum 
array is focused at the exact source location, the degradation 
of the output signal-to-noise ratio (SNR) becomes unacceptable. 
The automatic focusing technique (AFT), developed for long- 
wavelength imaging systems using nonadaptive linear arrays, 
is extended to focus adaptive arrays such as the Applebaum 
type. Thereafter, the far-field steering vector is used successfully 
to form a beam toward the desired signal while suppressing 
the interferences. In addition, substantial improvements in data 
processing have been achieved through the use of a partial 
convolution in the frequency domain. It is also demonstrated that 
the AFT can be used when the signal source range lies in the 
beginning of the Fresnel region of a nonadaptive linear array 
with negligible loss in the output signal-to-noise ratio. 
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HE Applebaum-type adaptive array [l], [2] has many T applications, such as in communication systems, radar 
systems, and nondestructive testing (NDT). It is capable of 
pointing a beam toward a desired signal direction and sup- 
pressing interferers automatically by the use of a steering 
vector. It has been shown [3], [4] that this type of array is 
highly sensitive to errors in the steering vector. Particularly 
when the distance between the signal source and the array 
center is finite, an Applebaum array is much more sensitive 
to the source distance than a conventional beam-forming array 
under far-field steering. It has also been shown [31, [4] that the 
far-field range of the Applebaum array is Nyd times that of 
the conventional nonadaptive beam-forming array [5], where 
N is the number of array elements and yd is the input signal-to- 
noise ratio per element. Thus, when the source is not at the far 
field, the Applebaum array needs to be focused at the location 
of the source. Furthermore, the range beamwidth or depth of 
field of the Applebaum linear array is reduced by a factor of 
Nyd [4] compared with that of a conventional, nonadaptive 
beam-forming array. It can be said, therefore, that for finite- 
distance source applications, the Applebaum array can only 
be used when a priori and exact information conceming the 
source location and direction is available. 

In this paper, it is demonstrated that the automatic focusing 
technique [6], 181, developed for nonadaptive linear arrays 
used in long-wavelength imaging systems, can be extended 
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Fig. 1. Direct automatic focusing technique procedure. 

to focus adaptive linear arrays at a finite and unknown source 
location. It is also shown that, when the signal source lies 
at the beginning of the Fresnel region [ 121 of a nonadaptive 
linear array having the same configuration as the Applebaum 
type, the output SNR loss is only 6 dB. This technique is 
based on the assumption that the signal frequency of the 
desired source is swept across the transmitter bandwidth Af 
to generate a two-dimensional voltage vector V ( x ,  f )  at the 
array elements. This signal vector is taken through the different 
stages of the AFT shown in Fig. 1, to obtain a focused 
one-dimensional vector V’(z). This signal vector is then fed 
into the Applebaum array, shown in Fig. 2, where far-field 
steering is used successfully. The only drawback of the AFT 
is that it requires a considerable amount of data processing. 
However, this problem has been eased [8] by the use of a 
partial convolution in the frequency domain. 

11. PROBLEM FORMULATION 

The Applebaum linear array structure [ 11 considered in this 
paper is shown in Fig. 2. The N elements are assumed to be 
isotropic with no mutual coupling. The weights are derived 
adaptively using a priori information [4] in the steering vector 
to discern the desired signal while suppressing automatically 
the interference signals. The CW signal is located at ( p d ,  O d ) ,  

where P d  and Od are the distance and the angle measured from 
the array center and the broadside direction respectively. In 
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Fig. 2. Applebaum linear array structure. 

the steady state, the weight vector W = (w1, w2,. . . , W N ) ~  

is given by [2] 

where S* is the steering vector and the asterisk denotes 
complex conjugation. M is the covariance matrix, given by 

M = E{V*(t)VT(t)} ,  (2) 

where E{.}  denotes the expectation. In (2), V ( t )  = 
( v l ( t ) ,  w z ( t ) , . . . , ~ N ( t ) ) ~  is the input signal vector at the 
array elements which can be decomposed into 

where N ( t )  is the noise vector, a( t )  is the waveform of the 
signal, and s d  = ( S d l ,  S d Z ,  . . . , S d N ) T  represents the phase 
components of the signal at the array elements relative to the 
phase at the origin. The nth element of s d  is given by 

where lc = 2 7 r / X ,  j = &i, and p, is the distance from the 
nth element to the source. 

Originally, the AFT was developed for nonadaptive linear 
arrays where a phase error of 7r/8 can be tolerated [5]. 
Therefore, Fresnel approximation [ 123 was used successfully 
for the expression of p n  (see Appendix A). To account for the 
phase sensitivity of the Applebaum array [13], [14], Fresnel 
approximation is extended to the fourth term of the binomial 
expansion of pn. It is shown in Appendix A that in the Fresnel 
region [ l l ]  pn can be approximated by 

(4) 

Since P d  in (4) contributes a constant phase for all array 
elements, s d  can be written as 

When the source is in the infinite far field, the quadratic phase 
term in s d  becomes negligible. The corresponding far-field 
steering vector S = (SI, s 2 ,  s3, .. . , SN) where 

s, = exp [jlcx, sin O d ] ,  (6) 

when used in (1) yields optimal output signal-to-noise ratio. 
For a value of P d  which is less than the far-field range, far- 
field steering is not applicable [3] and the array needs to be 
focused at the signal source location ( p d ,  O d ) .  For perfect 
adaptivity, S = s d  and the weight vector given by (1) yields 
maximum signal-to-noise ratio. In practice, the signal source 
range information is usually unavailable, and searching for the 
optimal focusing condition can give rise to an unacceptable 
degradation in signal-to-noise ratio. Yeh et al. [4] derived 
an approximate expression for the output signal-to-noise ratio 
(SNR) as a function of the steering distance and the steering 
angle for an available a priori information ( p ,  6) for the signal 
source location. This is given by 

(7) 

where F ( p ,  19) is given in [4]. As a result, a rule of thumb is 
devised to determine both the steering angle and the steering 
distance that result in an acceptable SNR loss. It has been 
shown [4] that these steering parameters must be very close 
to the exact signal source location, and that the parameters for 
a conventional beam-forming array cannot be applied directly 
to the Applebaum array. 

111. THE AUTOMATIC FOCUSING TECHNIQUE 
The AFT has two versions. The first [7] is based upon a 

mathematical analysis technique, known as angular spectrum 
decomposition [9], [lo]. It is therefore valid in the very near 
field, given by [ l l ]  

0 2  

2 x  P5-7 

where D is the length of the array. The second [6] is based 
upon the Fresnel formulation of the diffraction field [9]. It 
is valid in the Fresnel region [ l l ] ,  [12] and extends to the 
far field. Both versions of the AFT have been validated 
experimentally in both microwave and ultrasonic regimes [6], 
[7]. They have produced simultaneous in-focus imagery for 
point-target reflectors situated at widely different and unknown 
ranges from the receive aperture plane. In this paper the second 
version of the AFT is considered. This technique is based on 
the assumption that the frequency of the signal is swept across 
the transmitter bandwidth Af.  The received frequency target 
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response for every array element is transformed to the “range” 
domain through the use of the fast Fourier transform (FFT), 
where the targets become segregated in the time or “range” 
domain. A varying Fresnel or focusing factor [8] is used to 
correct each target at its respective location. The resulting 
corrected target range response is transformed back to the 
frequency domain through the use of the inverse fast Fourier 
transform (IFFT). It has been demonstrated [8] that when the 
central frequency data are selected, all quadratic defocusing 
factors due to each target are simultaneously removed. It 
is demonstrated in this paper that the AFT can focus an 
Applebaum array whose signal source is located in the Fresnel 
region at an unknown distance from the center of the array. 

Iv. AUTOMATIC FOCUSING OF APPLEBAUM ARRAY 

Focusing an Applebaum array implies the removal of the 
quadratic phase term 

from (5) and hence from the input signal vector V(t) .  For 
simplicity of the analysis, we assume that only the desired 
signal is present and that the signal amplitude is constant. 
This approximation is valid since the quadratic phase depends 
solely on the geometry of the array and the source location 
( P d ,  e d ) .  Using ( 3 )  and (3, the nth array element signal can 
be written as 

If the frequency is swept across the transmitter bandwidth, (8) 
becomes 

where c is the speed of light. With reference to Fig. 1, the 
output of the FFT processor v,(R), where R = ct denotes the 
range, is corrected by the focusing factor f f n (R) ,  given by 

to yield vL(R), the corrected nth array element time or “range” 
response of the source signal. This signal is taken back to the 
frequency domain via a second FFT processor to obtain W: ( f  ). 
It is shown in Appendix B that if the center frequency data 
are selected the quadratic phase term is completely removed 
and thus 

vk(f0) = exp [ - j k ( P d  - 2, sin B d ) ] .  (1 1) 

In fact, taking the waveform of the signal a( t )  and the input 
noise signal into consideration, the corrected nth array element 
signal becomes 

vA(t) = a(t)exp[-jk(pd -z,sindd)] +n,(t). (12) 

Equation (12) is the output of the AFT procedure. It is 
equivalent to the nth array element voltage due to a source 
located at an infinite far-field range. Thus, far-field steering 
can be used in (1) to derive the weight vector that results in 
the maximum output signal-to-noise ratio, given by 

SNR,,, = N Y ~ .  (13) 

However, P d  is finite and thus Sp, given in Appendix A cannot 
be neglected for any Pd in the Fresnel region. The effect of 
this error on the output SNR is discussed in Section VI. 

V. IMPROVEMENT OF THE AFT 

With reference to the AFT algorithm outlined in Fig. 1, the 
focused nth array element signal can be written as 

4 (fo 1 = F [U, (RI f fn (R)1 I f = f o  

vn(f) 8 f f n  (f)lf=fo 3 (14) 

where F[.] and 8 denote the Fourier transformation and the 
convolution operation respectively. Since the convolution is 
required only at f = fo, (14) can be further reduced to a 
simple vector multiplication by putting 

and 

ffn(fK-1) 

where K is the number of frequencies scanned over the 
bandwidth A f .  Equation (14) becomes 

From (14) and (15), it can be seen that the AFT algorithm 
has been simplified considerably. The corrected signal is now 
obtained from the multiplication of the received data as the 
frequency is scanned and the Fourier transform of f f (x,, R), 
which can be calculated and stored beforehand. Thus N FFT 
operations are saved when compared with the direct AFT. This 
procedure is shown in Fig. 3. 

VI. SIMULATION RESULTS 

The AFT has proven its focusing capability experimentally 
in long-wavelength imaging systems [6] employing nonadap- 
tive linear arrays where a phase error of 7 ~ / 8  can be tolerated. 
In this section it is intended to demonstrate its extension to 
focus adaptive linear arrays such as the Applebaum type. To 
do this, we assume a 21-element linear array with element 
spacing equal to X / 2  (A = 3 cm). The signal source is located 
at Pd = 60X, which is well within the Fresnel region of a 
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Fig. 4. Phase of v(z,  fo) and d(Z, fo) for p,j = 60X, 6'd = 0' 

nonadaptive linear array with the same configuration (50X to 
200X). The AFT assumes a bandwidth Af = 5%fo with 
K = 21 frequencies centered at fo = 10 GHz. The input 
signal-to-noise ratio per element Td is assumed to be 20 dB. 

We begin by showing the focusing capability of the AFT. 
For a source at broadside, Fig. 4 demonstrates clearly that the 
quadratic phase inherent in the incoming wave is completely 
removed when the AFT is used. 

Next, we show that the focusing capability of the AFT 
is maintained for any incidence angle, thus confirming the 
validity of (11). Fig. 5 shows the phase of v'(z, fo) versus 
array element position for 6d  = lo", 20", 30", and 60". It is 
clear that the phase is linear with element position and that its 
slope increases with 6d .  

To account for the phase sensitivity of the Applebaum linear 
array, Fresnel approximation is extended to the fourth terms of 
the binomid expansion of the expression of p, (see Appendix 
A). Since the AFT removes solely the quadratic terms in the 
expression of pn, the phase of ~'(2,) is in fact 

$(%) = k ( z n  sin ed f S h ) ,  

where 6pn is given by (A3) in Appendix A. For a signal source 
located at an infinite far field, the slope of $(z) is equal to 
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Fig. 5. Phase of d ( z ,  f o )  versus I for pd = 60X, 6'd = loo ,  20°, 30°,  
~ - ,  

and 60'. 
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Fig. 6. rms error in the phase slope of U'(., fo) versus 6'd for pd = 60X 
and100X. 

5 sin 6d. However, when Pd is in the Fresnel region, Sp, cannot 
be neglected and thus the slope fluctuates around ksin8d. To 
investigate the importance of these fluctuations, the standard 
deviation of the phase slope, called here the root mean square 
(rms) error, is calculated. From (A3) in Appendix A, it can 
be seen that the rms error in the phase slope is proportional 
to cos2 6 d  and inversely proportional to p i .  Plots of the rms 
error in the phase slope versus 6 d  and P d  are shown in Figs. 6 
and 7 respectively. It can be seen from these figures that the 
rms error decreases rapidly with increasing 8d and Pd and that 
the maximum rms error is about 1.5" per meter for 6d = 0" 

From (10) it can be seen that the focusing factor, ff(R),  
is independent of Pd, this implies that Pd generally falls 
between two successive R samples. Provided that the sampling 
interval of R is made less than or equal to the smallest range 
beamwidth, or depth of field, of the Applebaum linear array 
[4], taken here at Pd = 60X, the resulting residual quadratic 
phase error contributes a loss of only 6 dB in the output SNR. 
As Pd is increased, the effect of the residual quadratic phase, 
although small, on the rms error in the phase slope is visible 
for large P d .  This is shown in Fig. 7. Figs. 8 and 9 show the 

and pd = 60X. 
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Fig. 7. rms error in the phase slope of ~'(2, fo) versus Pd for t)d = 0' 
and 30'. 

2 5 ,  

output SNR versus dd and Pd respectively. As expected, the 
output SNR is about 6 dB less than Nyd = 3 3 . 2 2  dB, for 
Pd = 60X and dd = Oo, and increases rapidly with Pd and 
ed. For instance, when Pd = 60X, the output SNR is about 
27 dB, whereas when Pd = 1OOX the output SNR is increased 
to 32 dB. 

VII. CONCLUSION 
In this paper we have demonstrated that the AFT can 

successfully focus an Applebaum linear array whose signal 
source is located at an unknown distance from the array 
center. Thereafter, the far-field steering vector can be used 
successfully. 

To account for the phase sensitivity of the Applebaum array, 
Fresnel approximation is extended so that all quadratic terms 
in the binomial expansion of the expression of pn are removed 
by the use of the AFT. The residual phase error due to Sp, 
is shown to have little effect on the array output SNR even 
when the signal source lies at the beginning of the array 
Fresnel region. Thus, the limitations of the Applebaum linear 
array when the signal source is not at the far field have been 

35 
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Fig. 9. S N R  versus P d  for 6'd = O o ,  30°, and 60' ( N  = 21, Yd = 20 dB). 

exact location of the signal source is not necessary for the 
AFT to be used provided that the sampling interval of R is 
made less than or equal to the smallest range beamwidth of 
the Applebaum linear array. 

Finally, the only drawback of the AFT is that it requires a 
considerable amount of data acquisition and processing. It is 
possible to improve this technique if the signal source trans- 
mits simultaneously all the frequencies instead of scanning 
them one by one. The received voltage vector V ( x ,  R)  can 
be processed in the same manner as in the original AFT. The 
"time-domain AFT" performance and implementation will be 
investigated in the near future. 

VIII. APPENDIX A 

In this appendix we derive the expression of the desired 
signal component at the nth array element. With reference to 
Fig. 10, 

pn = d ( p d  - X, sin dd)' + (x, cos e d ) 2  

In the Fresnel region [ 111, retaining only the first two terms of 
the binomial expansion of (Al) for use in the phase component 
of Sd, is called Fresnel approximation. It is valid [12] for 
nonadaptive linear arrays. However, Applebaum arrays are 
very sensitive to phase error and thus Fresnel approximation 
cannot be used. Retaining the first four terms of the binomial 
expansion of (Al), it can be shown that 

where 

sin dd cos2 6d  cos2 6d  (5 sin2 6d  - 1)~:. (A3) 2, + - 
2P: 8 P i  

SPn 

The quantity Sp, is included to study its effect on the root 
mean square error in the phase slope of d ( x )  covered in 

completely removed when the AFT is used. In addition, the Section VI. 
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Fig. 10. N-element linear array. 

The desired signal component at an arbitrary nth array 
element is 

sd, = exp - (jkPn) 

IX. APPENDIX B 
DERIVATION OF EQUATION (1 1) 

The voltage at the nth array element as the frequency is 
scanned over Af is 

u,(f) = rect ( al )  f - fo exp - j ( q p , )  . 

The inverse Fourier transform of w,(f) is 

un(R) = Afexp(jkB(R))sinc 

where 
x: cos2 6d 

2Pd  (A5) 
B(R)  = R - p n  M R - Pd + 2, sin6d - 

and 

(“Y) sinc (y) = sin - 
“Y 

Upon application of the focusing factor 

the corrected nth array element voltage becomes 

)I Xi cos2 dd 

2R 

4 n c  ( y B ( R ) ) .  (A6) 

It is clear that an exact analytical expression of wk(f) cannot 
be derived due to the 1/R term in the phase component of 
wL(R). However, a very close analytical expression can be 
obtained. Putting 

(A74 I(R) = R - Pd + 5 ,  Sin6d 

al 

> n 
- 

- m 

0 

Fig. 1 1  

and 
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such that 

Fig. 11 shows the variations of Z(R), h(R) and Z(R) + h(R) 
in terms of R for Pd = 60X, Qd = Oo, and x = D/2.  It is clear 
that, from the Fresnel region to the far field, Z(R) >> h(R). 
Thus h(R) can be neglected in (A8). Using this approximation, 
the Fourier transform of wL(R) becomes 

.exp - j (7) 2nfR dR. (A9) 

Substituting s = (Af/c)B(R) in (A9) yields 

wL(f) = c ( x n ,  P d r  6d) 

exp - j [ 2(f - fo) 1 sinc ( s )  ds ,  (A10) 

where 

and thus 

The value of the integral is a real quantity and thus it does 
not affect the phase of the signal at the nth array element. For 
instance, if the integration is taken from (-M to +CO) 

wL(f0) = exp - j k ( &  - x, shed) ,  (A12) 

which is equivalent to the nth array element voltage due to a 
source located at an infinite far field. 
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