
  1 

 
 
 

FLAW IMPULSE RESPONSE ESTIMATION IN ULTRASONIC 

NONDESTRUCTIVE EVALUATION USING BI-CEPSTRA 

 
A. Yamani 

K.F.U.P.M. Box 1811 
Dhahran 31261, Saudi Arabia 

email: myamani@dpc.kfupm.edu.sa 
 

ABSTRACT 

 Pulse echo measurements in ultrasonic nondestructive evaluation (NDE) are masked by 

the characteristics of the measuring instruments, the propagation paths taken by the ultrasonic 

pulses, and are considered to be corrupted by additive noise. It is assumed that the measured 

pulse echo is obtained by linearly convolving the defect impulse response (IR) with the 

measurement system response. Deconvolution operation therefore, seeks to undo the effect of 

this convolution and extract the IR which is essential for defect identification. Autocorrelation  

(or power spectrum) deconvolution techniques are limited to  the identification of minimum 

phase systems. In this work, we show that higher order cepstra can be used to deconvolve the 

IR of the flaw from ultrasonic echo measurements (synthetic as well as real).  We also 

demonstrate that a deconvolution based on the use of the bicepstrum gives lower identification 

error variance when compared with the results of Wiener filtering deconvolution, specially at 

low signal-to-noise ratios (SNR).  
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1. Introduction 

  In a typical ultrasonic inspection system, ultrasonic pulses are generated by a 

piezoelectric transducer coupled to the test specimen. As the ultrasonic wave propagates 

through the material, some of its energy will be reflected whenever it encounters in its path  an 

inhomogeneity,  a discontinuity, or the back surface of the specimen. The reflection (echos) are 

then measured using a pulser-receiver [1].  If the velocity of the ultrasonic wave in the tested 

material has previously been determined, then from a measurement of the round trip travel 

time, the distance between the transducer and the defect can be deduced. However, this 

information alone is not sufficient for many of today’s highly sophisticated manufacturing 

processes. In many cases, the geometry of the hidden defect is of interest [2]. For example, 

some ultrasonic reflectors (e.g. planar cracks) are much more likely to lead to eventual failure 

than volumic flaws such as slag or porosity. In ultrasonic NDE of materials, it is considered that 

pulse echo measurements are masked by the characteristics of the measuring instruments, the 

propagation paths taken by the ultrasonic pulses, and are considered to be corrupted by 

additive noise. It is assumed that the measured pulse echo is obtained by linearly convolving 

the defect IR with the measurement system response. Deconvolution operation therefore, seeks 

to undo the effect of this convolution and extract the IR which is essential for defect 

identification.  

  The problem of deconvolution have many applications in areas such as 

communications, seismology, and medical imaging. Chen  [2] has applied different 

deconvolution techniques to ultrasonic NDE, and it seem from his study that Wiener filtering 

produces acceptable  results. There are however some drawbacks to Wiener as well as to other 

SOS-based deconvolution techniques, which are  their inability to accurately identify non-
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minimum phase systems, and their accuracy depends upon a priori knowledge of the noise 

statistics.  Some of these deconvolution techniques such as Wiener filtering, and spectral 

extrapolation are based on a priori knowledge of second-order statistics (SOS) of the noise and 

the input signal which is not available in many cases. SOS based deconvolution techniques such 

as the least squared error (L2), the L1 and Wiener give poor results at low SNR.  In addition, 

(L2), the L1,  in particular, are sensitive to time shifts in the measurement signal with reference 

to the input signal. Thus they require signal alignment prior to processing. Moreover, ultrasonic 

pulse echoes can be of minimum or non-minimum phase systems.  SOS-based deconvolution 

techniques, being phase blind, are not expected to accurately identify the defect impulse 

response in the case of non-minimum phase [3].  

 In this work we process the data in the poly-cepstra domain which is more suitable to 

eliminate effects of any additive Gaussian noise, and identify both minimum and non-minimum 

phase systems [4]. Without loss of generality, we show examples using the bi-cepstrum. We 

apply the proposed technique to simulated as well as real ultrasonic signals and compare it with 

those obtained using  Wiener filtering. 

 

2. Higher-Order Statistic Approach 

 Higher-order statistics (HOS); also known as cumulants, of a random process are related to 

its joint moments [3].  They give a measure of the distance of the random process from 

Gaussianity.  This can easily be seen from the definition of the nth order cumulant of the zero-

mean stationary random process w(k) given as  

 

  { } { }c k k k E w k w k E g k g kn
w

n n n( , , , ) ( ) ( ) ( ) ( )1 2 1 1 1 1 1− − −= −  (1) 
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where g(k) is a zeros-mean Gaussian random process having the same variance as w(k) [4], and 

E{} is the statistical expectation operator. Related to the cumulants are the poly-spectra, and 

poly-cepstra. The z-transform  of the nth order cumulant produces the nth order spectrum.  

Whereas the nth order cepstrum is obtained from the inverse z-transform of its corresponding 

log spectrum.  Therefore, the bi-cepstrum of a non Guassian random process y(k) can be 

written as 

   

  [ ]{ }),(ln),( 213
1

213 zzCZkkv yy −=  (2) 

 

where Z-1 is the inverse z-transform, and 

 

  [ ]{ }C z z Z c k ky y
3 1 2 3 1 2( , ) ( , )=  (3) 

 

3. Problem Formulation 

 It is assumed that a defect is modeled as a linear time-invariant (LTI) system such that it 

is characterized by its corresponding “impulse response”, h(t).  Assuming a linear convolution 

model for the  ultrasonic flaw signal such as 

  )()()()( knkhkxky +⊗=  (4) 

where x(k) is the flawless reference signal, h(k) is the flaw’s impulse response, and n(k) is an 

additive Gaussian white noise (AGWN).  Our task is to extract the flaw’s impulse response h(k) 

from Equ.(4) from measurements of  y(k), and x(k).  
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 Since the poly-spectrum of AGWN is zero, then the noise-free bi-spectrum of Equ.(4) is 

given by  

  C z z C z z C z zy x h
3 1 2 3 1 2 3 1 2( , ) ( , ) ( , )=  (5) 

which shows that the use of HOS-based deconvolution techniques, alleviates the effect of  the 

additive noise. In addition, it enables us to identify  both minimum and non-minimum phase 

systems.  It is found [5,6] that the finite bi-cepstral parameters Ai’s and Bi’s, computed from 

equ.(5), can be used in the recursion  

  h k
k

A h k i ki
i

k

min min( ) ( );= − − + ≥+
=

+

∑1
1 11

2

1

 (6a) 

  h k
k

B h k i ki
i k

max max( ) ( );= − + ≤+
= +
∑1

1 11
1

0

 (6b) 

where hmin and hmax are respectively the minimum-phase and non-minimum-phase components 

of the system impulse response h(t) given by 

  h k h k h k( ) ( ) ( )min max= ⊗  (7) 

The identified system impulse response obtained using the bi-cepstral parameters  is based on a 

system driven by a non Gaussian white noise input. Since the available reference signal x(t), is 

not necessarily  white, thus, a  pre-whitening filter for x(t) is used as shown in Fig. 1.  

 

 

 

Figure 1.  The model used in the identification of the defect’s impulse response 
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4. Tests 

4.1 simulations 

The synthesized data is generated as follow. The input x(t) used for the defect model shown in 

Fig. 1 is produced using a sinusoidal signal with frequency in the ultrasonic range, that 

amplitude modulates a Gaussian pulse.  The noise, n(t) is Gaussian white with zero mean and 

variance σ  which is varied in order to obtain different signal-to-noise ratios (SNR). The defect 

is represented by three different  LTI systems to cover all practical parametric modeling, 

namely an autoregressive (AR), a moving average (MA), and an autoregressive moving average 

(ARMA) systems. Simulated pulse echo data for each model is thus generated by equ.(4), with 

different SNRs. 

The three models considered are: 

a) A  minimum phase autoregressive (AR) system whose transfer function is given by 

  H z
z z zAR ( )

. . .
=

− + −− − −
1

1 0 7 0 6 0 31 2 3  (8). 

b) A non minimum phase moving average (MA) system whose transfer function is given by 

  H z z z zMA ( ) . . .= − + + −2 134001 2 7697 0 6978  (9). 

c) A non minimum phase autoregressive moving average (ARMA) system whose transfer 

function is given by 

                                    H z z z z
z z zARMA ( ) . . .

. . .
= − + −

− + −

− − −

− − −
1 325 35399 12487
1 186 147 0 5246

1 2 3

1 2 3            (10).  

In this section, the bi-cepstral deconvolution technique  is first tested on synthesized data. The 

bi-spectra of x(t) and y(t) are calculated first, and used to compute the bi-cepstral parameters 

using the relationship defined by Pan and Nikias [5]. Then, the defect impulse response is 

estimated using these bi-cepstral parameters as in Equs.(6) and (7). The estimation error 
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variances between the actual and the estimated impulse responses is then calculated for 

different SNR.  

In order to compare SOS with its counterpart HOS deconvolutions, the minimum-phase AR 

system is considered first and the system IR is estimated using both Wiener Filter (SOS) and the 

proposed bi-cepstrum deconvolution (HOS). Although Wiener filter is expected to accurately 

produce the minimum-phase system IR, it can be seen from Fig.2 that the proposed technique 

outperforms conventional deconvolution methods especially at low SNR. 
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Figure 2.  Estimation Error variances of the AR system impulse response. 

 

To appreciate the effect of the estimation error variance on the computed IR, both theoretical 

(actual) and estimated IR signals using Wiener and Bi-cepstrum techniques are shown in Fig.3 

(a) and (b) respectively at SNR=5 dB. Although the estimation error variance for Wiener filter 

is about 1% at SNR of 5dB, it can be seen that the resultant IR has pronounced oscillations 

which may result in an erroneous defect classification that is based on time-domain feature.  
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(a) 
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(b) 

Figure 3.  Impulse responses of the AR system obtained from a) Wiener filtering technique, b) bicepstral 

deconvolution technique. For SNR=5 dB. 

 

 Next, maximum-phase systems (MA and ARMA) are considered. Wiener filter fails to 

estimate accurate IR and thus, it is not included here. However, when the proposed technique 
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is used, highly accurate estimation is obtained for both systems at an SNR as low as 5 dB. This 

is shown in Fig. 4 for MA system and in Fig. 5 for ARMA system. 

 

-1.5

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35

Time index

Im
pu

ls
e 

re
sp

on
se

Theoretical

Bicepstral

 

Figure 4.  Theoretical and estimated impulse responses of the MA system (at SNR=5 dB). 
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Figure 5.   ARMA system impulse response : true and estimated impulse responses for a SNR=5 dB. 
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4.1 Real ultrasonic data 

 The proposed bicepstrum deconvolution technique is tested on the real ultrasonic data 

used in [2].  The reference signal A0 obtained from the flawless sample is used as a reference 

to deconvolve each flaw IR from its corresponding pulse echo measurements. Two artificial 

defects are considered; namely an angular-cut hole ( A2), and a circular-cut hole (A3),  in 

aluminum blocks, (see [2] for an illustration of these defect geometries). The center frequency 

of the transducer used is 15 MHz, and the A-scan signals contain 512 data points digitized at a 

rate of 100 MHz. The pulse-echo signals corresponding to A0, A2, and A3 samples are 

represented by T15A0, T15A2, and T15A3 respectively. For illustration, the signals T15A2 and 

T15A3 are  shown in Fig. 6 and Fig.7 respectively.  

When the bicepstrum-based deconvolution technique is applied to real ultrasonic signals, 

namely, T15A2 and T15A3, with T15A0 taken as the reference signal, smooth, oscillation-free 

impulse responses (compared to other conventional deconvolution techniques as in [2]) are 

obtained as shown in Figs. 8 and 9. 
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Figure 6.  Actual ultrasonic pulse echo for the angular-cut specimen (A2). 
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Figure 7.  Actual ultrasonic pulse echo for the circular-cut specimen (A3). 
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T15A2
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Figure 8.  Impulse response of the angular-cut hole (A2). 
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Figure 9.  Impulse response of the circular-cut hole (A3). 
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CONCLUSION 

 We have shown that higher order cepstrum can be used in the identification of flaws 

impulse responses in ultrasonic evaluation.  It has been demonstrated that the effects of AWGN 

can be eliminated.  In addition, identification of both minimum and nonminimum phase IR is 

possible.  In our future work we intend to study the affect of non Gaussian additive noise on 

the results of flaw impulse response identification using polycepstra as well as polyspectra. 
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