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Abstract

Successful application of the rich collection of classification algorithms to non-destructive testing signals depends heavily on the

availability of adequate and representative sets of training examples, whose acquisition can often be very expensive and time consuming.

In this paper, an out-of-service pressure vessel known to have lots of high-temperature hydrogen attack defects is used to develop in a

cost effective manner a database of ultrasonic A-scan signals. To test how adequate and representative these sets of A-scan signals are, a

basic feature extraction method coupled with a primitive classifier is shown to distinguish accurately the hydrogen attack from

geometrically similar defects.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Studies have shown that manual ultrasonic inspection
can be accurate but highly variable, depending on the
inspection skills, training and emotional status or fatigue of
the inspectors [1]. Many inaccurate inspections result from
faulty instrument calibrations, inaccurate probe selection,
or inaccurate interpretation of inspection results. The
human factor when combined with variations in instru-
mentation, contribute to a lack of consistency in inspection
results and interpretations.

Considerable advancement in research and development in
the last few decades has enabled non-destructive testing
(NDT) to change from a ‘‘Black Smith’’ profession to an
advanced multidisciplinary engineering profession. This has
led to cost effective solutions of many challenging problems.
Pipelines for instance, can now be screened without
disturbing the production using intelligent tools such as
pigging [2], guided wave ultrasound [3], phased arrays [4], etc.

In addition, the existence of cheap computing capabilities
has led to the development of NDT techniques that are
e front matter r 2007 Elsevier Ltd. All rights reserved.

teint.2007.10.007

8602463; fax: +966 38603535.

ess: myamani@kfupm.edu.sa
operator independent. These techniques rely heavily on the
collection of huge measurement data that after appropriate
processing will enhance operator interpretation. Automated
ultrasonic detection and classification (AUDC) systems are
thus becoming increasingly popular [5]. Motivation for the
use of such systems arises from the need for accurate
interpretation of large volumes of inspection data, and
minimizing errors due to human factors. AUDC systems
consists of three major parts namely pre-processing,
features extraction, and classification. A number of
supervised and unsupervised classification algorithms [6]
such as K-mean clustering algorithm, fuzzy C-means, and
more recently neural networks have been proposed for
classifying signals. Using a suitable training algorithm,
these networks can be trained to learn the correlation
between features in signals and the type of reflector.
However, the success of all such algorithms depends heavily
on the availability of an adequate and representative set of
training examples, whose acquisition is often very expensive
and can be time consuming. For instance, application of
ultrasonic techniques for high-temperature hydrogen attack
(HTHA) detection [7–9] requires a skilled ultrasonic
technician with a good understanding of the mechanism
of HTHA, and the ways it affects the propagation and
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Fig. 1. A block diagram representing the data acquisition system used.

Fig. 2. Out-of-service pressure vessel used to collect the data.
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scattering of the ultrasonic wave. There have been cases in
the industry where NDT inspectors have either missed
HTHA or called it incorrectly [9].

The objective of this contribution is to create a reliable
database for HTHA from a retired pressure vessel known
to have many HTHA defects [11], and to show that
advanced signal processing techniques can aid NDT
technicians to correctly identify HTHA from similar
defects found in steels.

2. High-temperature hydrogen attack

HTHA is a metal degradation phenomenon that is well
known to occur in carbon and low steels exposed to high
partial pressure of hydrogen at elevated temperature. The
source of hydrogen is the hydrocarbons in the flow steam.
The damage is caused by the seepage of hydrogen that
reacts with metal carbides to form methane gas. This
reaction decarburizes steel, produces microcracks, and
lowers the toughness of steel without necessarily producing
a loss of thickeness.

Detection of HTHA is important to assure safe
operation of pressure vessels and piping systems susceptible
to such damage. Application of ultrasonic techniques for
the detection of HTHA [7–9] requires high-skilled techni-
cian with a good understanding of the mechanism of
HTHA and how it affects the propagation and the
scattering of ultrasonic waves. While hydrogen attack
affects wave velocity ratio, backscattered amplitude, and
the frequency of the ultrasonic signal, other material
discontinuities can influence these ultrasonic parameters
as well and give a false call. For example, microcracks,
voids, inclusions, and grains in the material scatter
ultrasound and have frequency dependant affects. In
addition, stringers in steel; which are non-metallic inclu-
sions in the original ingot, become elongated though the
rolling process and form into long, continuous or semi-
continuous inclusions. Thus, ultrasonic reflections from
these stringers can be easily misinterpreted as HTHA
especially when they are close to the inner diameter surface.
There have been cases in the industry where inspectors
have either missed HTHA or called it incorrectly [9].
Ultrasonic testing for this application is therefore not
straightforward and requires a logical test methodology to
detect HTHA. In the next section, a complete description
of the data acquisition of ultrasonic A-scans obtained from
a retired pressure vessel known to have many HTHA will
be outlined.

3. Data collection and database creation

An out-of-service pressure vessel with wall thickness
33mm known to have many HTHA [11] is used to collect
RF A-scan signals for use in the database. The data
acquisition system used is shown in Fig. 1. It consists of a
SONATEST Masterscan 340 flaw detector, compression
wave probes, couplant, and calibration blocks. The flaw
detector has the capability of displaying and storing up to
100 RF A-scan signals. It also can transfer these signals to
a PC via an RS 232 interface using the SONATEST Data
Management Software (SDMS).
A 4MHz single compression probe (SLH4-10) is

connected to the flaw detector operating in a pulse-echo
mode. First, an I.I.W. A2 calibration block is used to
calibrate the instrument in the RF mode. The range is set at
50mm of steel; the probe is placed on the top of the A2
block (2 in. or 25.4mm thickness). The speed knob and the
delay button are used to get two equidistant backwall
reflections. Next, the sensitivity and gain settings are
carried out using a 1.5mm hole in the A2 calibration
block. Second, the range is reduced to 35mm and a delay
of 38.10mm is applied to the flaw detector so that one wall
thickness is displayed across the screen. Next, the probe is
placed on the outer wall of the 33mm pressure vessel
shown in Fig. 2. A snapshot of the flaw detector screen is
shown in Fig. 3, where five HTHA defects are shown to be
distributed along the pressure vessel wall thickness. The
cursor available in the SDMS software is used to measure
accurately the location of the maxima of the RF signals
displayed. Thus, the defects are found to be located from
the outer-diameter surface at distances 3.66, 11.68, 15.69,
18.57, and 23.89mm, respectively. The thicker horizontal
line in the graph represents a gate that starts from
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Fig. 3. Snapshot of the flaw detector screen showing five HTHA defects.

Fig. 4. A C-scan sample of the pressure vessel showing HTHA in its

critical stage of ‘‘connection’’.

Fig. 5. Snapshot of the flaw detector screen showing defect 5 isolated from

the rest of the defects.
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45.38mm (7.28mm from the outer-diameter surface) and
ends at 70.16mm (32.06mm from the outer-diameter
surface). Fig. 4 shows a C-scan sample obtained during
the inspection of the pressure vessel. It clearly shows that
HTHA defects are in the critical stage of ‘‘connection’’
where rupture would occur imminently.

Since the A-scan signal of only one defect is of interest
for the creation of the database, and that HTHA defects
are usually close to the inner diameter surface, defect 5 is
considered for this task.

Zooming on the region around the position of defect 5
(reducing the range to 10mm, and tuning the delay), so
that the signal of defect 5 is displayed across the screen.
The probe is moved around to maximize the pulse echo of
defect 5. Fig. 5 shows a snapshot of the flaw detector screen
showing the pulse echo of defect 5. The location of this
defect is displayed at 61.19mm corresponding to 23.09mm
from the outer-diameter surface (61.19–38.10). This con-
firms the closeness of defect 5 to the inner surface.

The probe is now moved randomly around defect 5 to
record as many A-scan signals as possible. These acquired
signals would be obtained by different operators perform-
ing the test. Statistically speaking, no two operators would
measure the same A-scan for a given defect. Next, another
HTHA defect is detected and all possible A-scan signals are
recorded in a similar manner. This process is carried on,
and each time the A-scan signals are transferred to a
directory in the Laptop using the SDMS software to create
a HTHA databank of 400 A-scan signals. The acquisition
of such signals is carried out by the author himself to
assure the adequacy and the representativeness of the data
sets. This is reflected in the high classification accuracy
obtained even when simple features and basic classifier are
used. Thus, using a commercial flaw detector, simple
feature extraction technique, and a basic classifier can serve
as an automatic NDT tool that aids inspector to accurately
detect HTHA from geometrically similar defects.
4. Experimentation

To test the adequacy and the representativeness of the
developed HTHA database, two other databases of
geometrically similar defects are created. These defects
are lamination (LAM), and an artificial defect that consists
of a flat-bottom hole (FBH). The AUDC system to be used
consists of three major parts:
(a)
 a pre-processor,

(b)
 a feature extractor, and

(c)
 a basic classifier.
Basic pre-processing operation is applied to the A-scan
signals. It consists of removing the DC components, and
normalizing all the signals to have the same energy. The
feature extraction stage here is based on the principal
component analysis (PCA) technique [10]. PCA is used
abundantly in all forms of analysis that range from
neuroscience to computer graphics. This technique is a
simple and a non-parametric method of extracting relevant
information from confusing data sets. With minimal
additional effort, PCA provides a roadmap for reducing
a complex data set to a lower dimension in order to reveal
the hidden, simplified structure that often underlie it. This
hidden information is called feature. Next, the extracted
features are presented to a priori trained classifier based on
nearest-neighbor classification to decide on which class the
inputted A-scan signal belongs to.
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Table 1

Worst confusion matrix result obtained after 500 tests

Worst test Classified as

LAM HTHA FBH

True class LAM 9 0 1

HTHA 2 7 1

FBH 1 0 9
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4.1. Data organization and processing

Fig. 6 shows one defect database organized in four sub-
groups SG1, SG2, SG3, and SG4. The 100 A-scan signals
contained in each sub-group are collected during one visit
to the site. Each sub-group data set is thus collected in
different conditions and at different times. A training
vector XTr

i;j containing 20 A-scan signals picked up
randomly from sub-group i of database j. Similarly, a
testing vector XTe

i;j containing 10 A-scans signals picked up
randomly from the remaining 80 A-scan signals of the ith
sub-group, belonging to database j. Thus, a training matrix
for the ith sub-group of the three defects is formed as

Tri ¼ ½X
Tr
i;1X

Tr
i;2X

Tr
i;3� (1)

Similarly, a testing matrix of the ith sub-group of the
three defects is formed as

Tei ¼ ½X
Te
i;1X

Te
i;2X

Te
i;3 � (2)

The AUDC system is first trained using the training
matrix Tri and tested using the testing matrix Tei.
0 20 40 60 80 100

Number of tests

Fig. 7. Overall classification accuracy for the three defects (average

99.46%).
4.2. Evaluation

To evaluate the performance of such system, it is
assumed that once the system is trained, an operator goes
on site and performs a test that consists of 10 measure-
ments for each defect class and presents these signals to the
AUDC system for classification. This operation can be
repeated as much as needed. Since the testing matrix is
picked up randomly (10 out of 80), and since it is not
probable that any two operators can measure the same
A-scan, then ð8010Þ � 1:6� 1012 independent tests are possi-
ble. For each test (30 A-scan measurements for three
classes), the AUDC outputs a confusion matrix that
measures the classification accuracy. After 500 independent
tests, the worst result obtained is shown in Table 1. From
this, it can be seen for instance that out of 10 measure-
ments, the LAM defect is detected and identified nine times
and missed once for the FBH. Similarly, the HTHA defect
is detected and identified seven times and missed twice for
LAM, and once for FBH defect. Alternatively, it can be
SG1 SG2 SG3 SG1 

Database

Fig. 6. Organization of each database in four sub-groups of 100 scans

each.
seen that LAM and FBH have 90% classification accuracy,
whereas, HTHA has only 70% classification accuracy. The
overall classification accuracy can be obtained by aver-
aging the diagonal elements. Here 83.33% is obtained.
The overall classification accuracy (average of the

diagonal elements of the confusion matrix) is not affected
much when the system is subjected to different tests. For
100 independent tests, the overall classification accuracy is
shown in Fig. 7. The average over these tests is 99.46%.
For HTHA defect, the classification accuracy versus the
number of tests is shown in Fig. 8, which averages to
98.4%.
The above results are obtained by fine tuning the feature

extraction process. As the magnitude of the principal
components decay almost exponentially, only the first 10
components are taken as features and fed to the classifier.
The 10th PC represents 0.54% of the first PC as shown in
Table 2.
Next, the classification accuracy of defects is investigated

when the number of PCs taken as features is increased.
Although the magnitude of the PC decreases rapidly
(Table 2), it seems from Fig. 9 that increasing the number
of features will decrease the classification accuracy. These
implies that the first few PCs represent characteristic
features for each defect and that other subsequent PCs
carry similar defect information and thus, contribute to the
confusion of the classifier. The high classification accuracy
obtained earlier (Figs. 7 and 8) was obtained with optimal
feature selection.
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Fig. 8. Classification accuracy for the HTHA (average ¼ 98.4%).

Table 2

Magnitude of the first 10 PCs fed to the classifier

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

875.1 408.9 180.2 35 31 14.5 10.7 7.4 6.5 4.7

Table 3

Effect of the sub-group data on the classification accuracy for HTHA for

different number of tests

HTHA Number of tests

10 20 40

SG1 (%) 91 90.5 90.3

SG2 (%) 98 98.5 98

SG3 (%) 94 94 97

SG4 (%) 97 96 97.3
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Fig. 9. Classification accuracy for HTHA versus number of PCs taken.
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Finally, the effect of sub-group data is used to
investigate the classification accuracy. Table 3 shows the
consistency of the high classification accuracy for HTHA
when all the sub-groups are used to pick up randomly the
training and the testing matrices. It can be seen from this
Table that the number of tests does not affect the
classification accuracy. However, the sub-group data
shows some variance in the accuracy. It is believed that
this is due to many factors including the quality of each
sub-group data collection.
5. Conclusion

Ultrasonic detection of HTHA requires a skilled ultra-
sonic technician with a good understanding of the
mechanism of HTHA, and the ways it affects the
propagation and scattering of the ultrasonic wave. Auto-
matic detection of such defect requires the availability of an
adequate and representative set of training examples whose
acquisition is usually time consuming and can be very
expensive. In this contribution, it is shown that with a
commercial flaw detector, a reliable database can be
created. HTHA is accurately classified among geometri-
cally similar defects using simple feature extraction
technique coupled with a primitive classifier. Thus, it is
shown that the availability of reliable database is vital for
any AUDC system to give accurate results that can aid
unskilled NDT operator to distinguish between challenging
defects such as HTHA and defects such as stringers
commonly found in pressure vessel and piping systems.
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