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Abstract— One of the main problems facing accurate 
localization using Time-of-Arrival (TOA) measurements in 
wireless communication systems is Non-Line-of-Sight (NLOS) 
propagation. Classification is among the important NLOS 
mitigation approaches whereby the system attempts to identify 
and localize with the LOS base stations (BSs) only.  In this paper, 
the impact of the number of NLOS BSs and their geometrical 
distribution on the localization process is investigated. With the 
use of a residual test (RT) classification algorithm, it is shown 
that, under certain conditions, the system that localizes with all 
BSs (including both LOS and NLOS) can benefit from error 
cancellation, and may perform better than the system that 
implements “pure” classification.  Based on this observation, it is 
concluded that BSs identified as NLOS should not always be 
dropped, and a modified classification algorithm is proposed. 
The new algorithm drops BSs identified as NLOS only when 
there are enough geometrically “well distributed” BSs to localize 
with. Simulation results show that the proposed algorithm can 
outperform other conventional classification schemes. 
 

Index Terms—Mobile positioning, non-line-of-sight (NLOS), 
time-of-arrival (ToA), localization, NLOS Classification. 

 
 

I. INTRODUCTION 
The need for localization of mobile stations is increasing 
rapidly in wireless cellular systems and sensor networks.  In 
network-based localization, the mobile terminal or wireless 
sensor is located by the network using some measured 
parameters like Angle of Arrival (AOA), Time of Arrival 
(TOA), Time Difference of Arrival (TDOA), or signal 
strength (SS). Error can be introduced to the localization 
process in different ways. The equipment that is used to 
measure location parameters limits the accuracy that can be 
achieved by a given positioning algorithm.  Even with perfect 
measurements, error could still result from the propagation 
channel over which signals must travel before being measured 
by the base station (BS) equipment. In this regard, the main 

 
 

sources of location error in wireless communication systems 
include multipath propagation, non-line-of-sight propagation 
(NLOS), and multiple access interference. Steps must be taken 
to mitigate these impairments to improve the location 
accuracy [1-2]. 

Out of the three main sources of error, NLOS propagation 
in TOA-based localization is found to be a critical issue [2].  
NLOS propagation pertains to the scenario where the direct 
(or LOS) path between the mobile station (MS) and the BS is 
blocked by some structures like buildings or mountains. With 
NLOS propagation, the signal arriving at the BS from the MS 
is reflected or diffracted and takes a path that is longer than 
the direct path.  As an indication of the severity of this 
problem, an experimental study has found that the typical 
ranging error introduced by NLOS propagation in GSM 
networks can average between 500-700 meters [3].  

NLOS propagation introduces a bias in the TOA or TDOA 
measurements even in the absence of multipath interference, 
and when high-resolution timing estimation techniques are 
employed. Therefore, it is important to find methods to 
mitigate the NLOS bias, and different techniques have been 
recently proposed for this purpose.  For example, 
classification-based, approaches attempt to identify LOS base 
stations to be solely used for localization. Other methods rely 
on weighting to provide relative scaling of the measured 
propagation parameters in order to minimize the effects of the 
NLOS bias.  

The main idea behind NLOS classification is to find some 
distinct properties of NLOS range measurements and develop 
hypothesis tests to separate LOS measurements from NLOS 
measurements in order to use only LOS measurements in the 
localization process.  In [4], the identification is done by a 
time-history based hypothesis test.  By using the time history 
of the range measurements in a simple hypothesis test, and by 
knowing the standard deviation of the measurement noise, the 
algorithm in [4] could determine if the measurements are LOS 
or NLOS. The algorithm presented in [5] can detect the NLOS 
BSs using the redundant information present in the TOA 
measurements when more than the minimum numbers of BSs 
are present. In this case, several hypotheses of the set of BSs 
under NLOS scenarios are formulated and, on the basis of the 
Maximum Likelihood (ML) detection principle, the most 
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suitable hypothesis can be selected. Different tests are also 
presented in [6-7] for identifying LOS measurements. In all 
these models, a zero-mean (about the true range) Gaussian 
distributed error is assumed with a certain variance for the 
LOS case. Thus, the different tests correspond to different 
available information about the distribution of the NLOS 
measurements. All the tests compare a likelihood ratio to some 
threshold and use the fact that the variance of NLOS 
measurements will be larger than LOS measurements. 

The algorithms in [4-7] perform well provided that there is a 
large number of BSs available with the majority being LOS 
with the MS. For more realistic scenarios having zero or one 
LOS BS, the algorithms provide little improvement in location 
accuracy and in fact, can perform worse than traditional 
algorithms, as will be shown in this work. 

In this paper, the impact of the number of NLOS BSs and 
their geometrical distribution on the localization process is 
investigated. The performance of the localization algorithm 
that implements a Residual Test (RT) for classification is 
investigated under different scenarios. It is shown that, under 
certain conditions, the system that localizes with all BSs can 
outperform the system that implements “pure” classification.  
BSs identified as NLOS should not be always dropped. Based 
on this observation a modified classification algorithm is 
proposed. 

In the remaining part of the paper, we introduce the system 
model and review the utilized localization algorithm. Section 
IV is dedicated to illustrate the impact of relative NLOS BSs 
position on the final localization error. Some examples are 
given where NLOS error from different BSs could add up or 
cancel out. Next, we introduce classification and examine its 
performance under different conditions. In section VI, based 
on the previous results, a geometry-dependent NLOS 
mitigation technique is introduced and evaluated. The paper 
concludes with some remarks and suggestions. 

II. SYSTEM MODEL  
We consider a wireless network topology with a given 

mobile station (MS) of interest and several serving base 
stations (BSs).  The mobile is located at Θ=(x, y), and its 
signal is received at different BSs located at (xi, yi), where i=1, 
2, …, N (N is the number of BSs). Signal propagation speed is 
given by 83 10c = × m/s. Synchronization is assumed (i.e. all 
BSs have the same time reference). The true distance between 
the MS and the ith base station (BSi) is Ri and the measured 
distance is  

ii TOAcl ×=  ,         (1) 

where TOAi is the one way propagation time between the MS 
and the BSi.  The network layout model consists of seven BSs 
surrounding the MS from different directions as shown in 
Figure 1. The coordinates for the given distribution of BSs is 
summarized in Table 1. 

 
Figure 1. Mobile Station and Base Stations Layout  

 
Table 1. Location of MS and BSs (all units are in km) 
 MS BS1 BS2 BS3 BS4 BS5 BS6 BS7 
x 0 6 4 -4 -6 -4 0 4 
y 0 0 -6 -6 -1 6 5 6 

III. NLOS ANALYSIS AND LOCALIZATION TECHNIQUE 
There are different techniques to estimate the MS position. 

The maximum likelihood algorithm is optimal but it is 
complicated. A suboptimal solution proposed by [8] has a 
performance comparable to the optimal algorithm with a 
reduced complexity.  This algorithm, which is adopted in this 
research, is known as Approximate Maximum Likelihood 
(AML) algorithm. Based on the system model, let 

iii Rl ε+= .    (2) 
where εi is assumed to be independently and identically 
distributed (i.i.d.) zero mean Gaussian random variables 
denoting TOA measurement noise in the ith BS. It is shown in 
[7] that the maximum likelihood (ML) estimate, Θ, minimizes 
J, where  

2

1
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Setting the differentials of (3) with respect to Θ to zero 

gives the likelihood equations   

0
N

i i i

i =1 i

(l - R )(x - x ) =
R∑ , 

1

( )( ) 0
N

i i i

i i

l R y y
R=

− −
=∑  .       (5) 

Equations in (5) are nonlinear in Θ and have no closed form 
solutions. However, [8] was able to manipulate (5) into a set 
of linear equations in Θ, in the form of 

AΘ = b                                                    (6) 
but with A and b being functions of Θ. A suboptimal but 
linear algorithm [9] first gives an initial estimate of Θ, which 
can then give values of A and b. Solving (6) then produces a 
new value of Θ to update A and b, and then Θ. The 
procedure, called the approximate ML (AML) estimator [8], 
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stops after five updates and takes the Θ that gives the smallest 
J in (3) as the solution. This ensures that the AML will not 
diverge, and will, at worst, have the errors of the linear 
estimator.  

For the case of NLOS measurements, equation (2) becomes  

i i i il R ε η= + + .    (7) 
where ηi is the NLOS error molded as i.i.d. random variable. 
For simulation purposes different scattering models that 
produce different NLOS error distributions can be used. 
Depending on the location environment used in the 
localization system, one of these models is used to generate 
the NLOS error in performance evaluation simulations. NLOS 
error is usually modeled by assuming a certain distribution for 
the scatterers. The most important and widely used ones are 
the Disk of Scatterers (DOS), Ring of Scatterers (ROS), 
Reversed Disk of Scatterers (RDOS), and the uniformly 
distributed models [10]. The algorithms to be discussed next 
have been validated with these different models. However, for 
the sake of brevity, we only consider the case of the uniform 
model in the rest of the paper.  

IV. IMPACT OF RELATIVE BASE STATION POSITIONS ON THE 
MOBILE LOCALIZATION ACCURACY 

In most previous works, the NLOS measurements are dealt 
with as unwanted biased data, which diminishes the 
performance of the positioning algorithms [7]. As a result, 
classification techniques are used to identify and eliminate the 
NLOS BSs and use only the LOS ones. This implicitly 
assumes that the information provided by LOS measurements 
provide sufficient statistics for optimal localization. 

In the following analysis, we show that the NLOS 
information can be useful  in some special scenarios if it is 
properly weighted and utilized in the positioning algorithms. 
The relative importance of this information is geometry 
dependent.  To clarify the geometry dependence, we consider 
different scenarios that illustrate how BSs positions affect the 
performance of the positioning algorithms. 

A. Geometries with Additive NLOS Error 
To illustrate how NLOS errors add up depending on the BS 

relative positions, simulations are performed with 500 
independent NLOS errors uniformly generated between zero 
and 400m, and assigned to BSs located on “the same side” 
vis-a-vis the MS. Because the NLOS bias is always positive, if 
two or more NLOS BSs are on the same side relative to the 
MS their effect will be added up and the region of their effect 
can be easily determined by the region enclosed by the 
straight lines passing through the NLOS BSs and the MS and 
away from the MS. For example, consider BS1 and BS7 to be 
the NLOS BSs. Figure 2 shows the estimated MS positions for 
this case. Note that the location error of the MS position 
estimation directionally add up because the two NLOS BSs 
are on the same side.  The large values of error are in the 
range of 120m in the case of two NLOS BSs versus 60m in 
the case of single NLOS BS. 

Figure 2.  Additive errors with BS1 and BS2 set as NLOS  
 

Similarly, for more than two NLOS BSs, each NLOS BS 
will affect the position estimation and the cumulative error 
will also directionally add up within the region determined by 
the straight lines passing through the NLOS BSs and the MS.  

B. Geometries with NLOS Error Cancellation  
We now consider another case where the NLOS BSs are not 

on the same side relative to the MS (e.g., co-linear BSs with 
MS is between). For example, setting BS 3 and BS 7 as the 
NLOS BSs, Figure 3 shows the MS estimated positions 
(scattering plot) for this case. Each NLOS bias is in the 
opposite direction of the other and most of the position 
estimations are about 18m far from the MS and located on the 
straight line passing through the co-linear BSs 3, 7 and MS. 
The NLOS effect does not add up as it did in the previous 
example when the two BSs on the same side relative to MS.  
As expected, similar observations hold when we have more 
than two NLOS BSs opposite each with respect to the MS. To 
sum up, these examples clearly show that the “geometry” of 
the NLOS BSs and MS is very important and has a direct 
impact on the performance of localization algorithms.  

Figure 3.  Additive errors with Two NLOS BSs (BS 3 and 7) 
 
To further illustrate the impact of NLOS bias and relative 

positions BS and MS positions, we consider varying the upper 
bound, UB, of the uniformly selected NLOS error, the 
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performance of the localization algorithm can be examined 
under different degrees of NLOS bias. Figure 4 shows the 
average localization error for different scenarios considered 
for the cases of two and four NLOS BSs. The NLOS bias 
added to these BSs is uniformly selected between zero and a 
maximum upper bound, UB. It is clear that as the upper bound 
of the NLOS error model increases, the average location error 
increases. The performance of the co-linear NLOS BSs 
scenario is better than the one-sided NLOS BSs scenario with 
both two and four NLOS BSs as shown in the figure. It is 
evident from Figure 4 that the performance of the co-linear 
cases is almost identical, which reflects the importance of the 
NLOS BSs positions in the accuracy of the localization. 

Therefore, based on the above observations, if a BS is 
identified as a source of NLOS error, it should not always be 
dropped from the localization algorithm. The added NLOS 
bias is directional and can cancel out in some scenarios. This 
fact is further exploited in the coming sections and used to 
develop an improved localization process.  

 

Figure 4.  Average location error vs. upper bound of 
the Uniform NLOS error model UB 

 

V. CLASSIFICATION TECHNIQUE IN TOA-BASED 
LOCALIZATION  

The Classification-based approach for NLOS mitigation 
attempts to identify and localize with only LOS 
measurements. If the identification is correct, the localization 
accuracy is what the localization algorithm can provide, but 
there is always the possibility of wrong identification. 

One of the tests that demonstrate good results is the 
residual test (RT) proposed in [7]. The residual test determines 
the LOS dimension (D), i.e., the number of LOS-BS and 
identifies those BS in order to localize only with them. The 
word residual reflects the error or residue because of using a 
subset of the base stations as opposed to using all of them. 
The residual test compares the residuals of a group of k BSs, 
against a predetermined threshold TH. If only a small 
percentage, say 20%, of the residuals are above TH, then D = 
k. Otherwise, the test moves to groups of (k − 1) BS. This 
process stops when it has determined D, or when D = 3, the 

minimum value necessary for a unique localization. In this 
case (D=3) another test known as the delta test is initiated. 

Based on the system model with seven BSs, the residual 
test (RT) begins by checking if D = 7. An approximate 
maximum likelihood (AML) positioning algorithm [8] can 
then be used to obtain a total of 99 estimates of Θ 
(corresponding to all combinations of three and more BSs). 
For example., in the case of  7C3 = 35, there are 35 different 
estimates of Θ, obtained from seven measured distances, 
taken three at a time.  

Letting these estimates be ˆ ( ),    = 1. . . 99k kΘ ,  the 
RT computes the square of the normalized residuals 

[ ]2
2 ˆ ˆ( ) (99)
( )=

( )x
x

x k x
k

B k
χ

− , 

 [ ]2
2 ˆ ˆ( ) (99)
( )=

( )y
y

y k y
k

B k
χ

−    ,  k =1,2,….,98            (8) 

When all measurements are LOS, the random variables in 
(8) should have a central χ2 (chi-square) distribution. This 
implies that estimates of MS location coordinates ˆkx  and 

ˆ ky should be Gaussian zero mean. The reference estimate 

is ˆ (99)Θ , because it is generally the best estimate of the true 

Θ among all ˆ ( )kΘ since ˆ (99)Θ is the estimate from all BSs. 
In (8), Bx(k) and By(k) are approximations obtained by the 

Cramer-Rao Lower Bound (CRLB) of Θ from the il  
combinations that produce ˆ ( )kΘ . This bound is a theoretical 
lower bound, valid when εi in li = Ri + εi are i.i.d. zero mean 
Gaussian random variables, and is a function of the 
radiolocation geometry. Its computation requires knowledge 
of the true Θ. Since this is not available, the ˆ ( )kΘ location is 
used as a substitute to produce Bx(k) and By(k). 

Now, if D = 7 (all BSs are LOS) and Θ̂ is an ML estimate 
of Θ, then the two normalized quantities 

ˆ ( )
( )x

x k x
B k

−

     ,    

ˆ ( )
( )y

y k y
B k

−

                                       (9) 
have a standard Gaussian normal distribution. It follows that 
all random variables in (8) have an approximate central χ2 
(Chi square) PDF of one degree of freedom. If, however, one 
or more of the li are NLOS, then some random variables in (8) 
will have a non-central χ2 PDF. 

For the residual test to work, an appropriate threshold TH 
must be chosen to compare the residuals with. Choosing TH is 
done in a way to minimize both the probability of over-
determination (POD) (e.g. when D <7 but the RT decides that 
D = 7) and the probability of under-determination (PUD) (i.e. 
when D = 7 but the decision is D < 7). For example, for a 
threshold TH= 2.71, D = 7 if only 20% or less of the r.v. are 
larger than TH=2.71, the pdf is central χ2. Otherwise, the PDF 
is non-central χ2, and D<7. 

It is noted that for the case D =3, the next task is to identify 
three LOS-BSs from the seven. Since three BSs do not 
provide enough number of R.Vs. for a reliable RT, a different 
test called the delta test (DT),  is used [7]. is called The DT 
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takes two BS as the reference set and combines with another 
BS out of the remaining BSs, to see if these three are LOS. 
Even if there is no three LOS BSs, the DT will find a set of 
three BSs that contains the smallest error, or closest to be LOS 
BSs. Due to their excellent performance, the RT combined 
with the DT are used in this work.  For the full details of these 
algorithms, the reader is referred to [7].  

VI. EXAMPLES AND DISCUSSION OF RESULTS 

A. Effect of the Number of NLOS BSs 

Simulations were performed to study how the average 
location error is affected by varying the number of NLOS BSs 
with and without classification. The NLOS range errors in 
these simulations were modeled as uniform random variables 
having support over 0 ≤ηi≤ 400m. Based on Figures 5, as the 
number of the NLOS BSs is increased the average location 
error increases. The average location error decreases slightly 
in localization without using the classification algorithm when 
most BSs are NLOS.  This is because the average location 
error considering co-linear NLOS BSs is small compared to 
NLOS BSs located on the same side.   

If the classification algorithm is employed in the 
localization process, the average location error will be very 
small compared to the unclassified algorithm when the 
number of  NLOS BSs is small (i.e. D = 6, 5 and 4), as shown 
in Figure 5.  As the number of NLOS BSs exceeds 4, 
classification performance degrades and it will reach its worst 
case when all BSs are NLOS.  

These results reflect the capability of the RT in improving 
the performance of the radiolocation algorithm when there are 
enough LOS BSs to locate with (D=6, 5 and 4). However, if 
there aren’t enough LOS BSs (D≤3), the classification 
algorithm leads to a very large error that can severely limit the 
accuracy of the localization algorithm. To clarify the causes of 
the large location errors associated with these cases, the 
behavior of the classification algorithm when D≤3 is 
examined in the following section. 

 
 

Figure 5.  Effect of the number of NLOS BS 
 

 

B. Classification Performance when D≤3 
Pervious results show that the performance of the 

localization algorithm using classification deteriorates when 
D=3 and it becomes worst when D<3. It is worth recalling that 
the delta test (DT) is used if D=3 because three BSs don’t 
provide a sufficient number of r.v for a reliable residual test 
(RT). By selecting three BSs out of seven in the simulated cell 
layout, the performance will be poor unless the three selected 
BSs are LOS.  In the case where the selected BSs are not LOS 
(i.e. D<3), the DT selects three BSs only, where at least one is 
NLOS (depending on the assumed D), and removes the 
remaining BSs. 

In contrast, as our previous simulation results showed, when 
the number of BSs considered in the localization algorithm 
increases (even if they are NLOS BSs), there will be some 
cancellation of localization error, especially when the NLOS 
BSs are co-linear. In order to clarify this point, simulations of 
the classification algorithm performance when D=3 (BS1, BS4, 
and BS6 are LOS) are done using 1000 independent trials. An 
estimate of the MS location is computed with and without the 
aid of classification. The NLOS error was randomly selected 
between 0 and 400m according to a uniform NLOS 
distribution model. The additive Gaussian measurement 
timing error has a variance of 81m. The maximum and the 
average location error in addition to the confusion matrix 
when D=3 is given in Table 2. From the table, 31% of the 
estimated dimensions are the true three LOS BSs and the 
location error is mostly less than 30m. The classification 
algorithm mistakenly estimates the dimension as D>3 for 331 
out of the 1000 independent trials, 63% of those  cases have a 
single NLOS BS and the remaining have two NLOS BSs.  

Scattering plots when the classification algorithm estimate 
the dimension as D=3 and those three BSs are not all LOS is 
shown in Figure 6. Depending on the position of those NLOS 
BSs used in localization process, the MS will be located as 
shown in the figure. The resultant location error in this case is 
relatively large since there is no cancellation of errors. 

The performance of the classification algorithm when D=3 
becomes poor. The maximum location error is about 140m if 
all BSs are used to locate the MS. If the classification 
algorithm is considered for the same case (i.e. D=3), the 
location error could reach 600m. The performance becomes 
even worse by using classification with D=2 or less.  

This poor performance of the classification algorithm, when 
D is small, unveils the power and weakness of the 
classification technique. The sources of errors can be 
summarized into three: limited use of information, wrong 
dimensionality and wrong identification, and correct 
dimensionality but wrong identification.  

In the next section, a proposed algorithm that gets rid of the 
poor characteristics of the classification algorithm (when D≤3) 
and maintains its advantage (when D≥4) is introduced. 
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Table 2.   Confusion Matrix when D =3 
 

   Number of NLOS BS 
included 

Estimates Average 
Error 

Max 
Error 1 2 3 

331 67.5 438.0 
208 

   
331 

123 
  

331 

   0          
  

331 

359 218.4 653.2 
178 

   
359 

181 
  

359 

   0  
  

359 

310 9.5 30.1 
  0 

   
310 

  0 
  

310 

  0 
  

310 
 

 
 

Figure 6.  Classification Performance when D=3 
(estimated as D=3 and wrong identification) 

 

 
Figure 7.  CDF plots of the average radiolocation error 

 

VII. THE PROPOSED POSITIONING ALGORITHM FOR BETTER 
NLOS MITIGATION 

The previous simulation results confirm that “strict” 
classification is not always the best choice for MS 
localization. It performs poorly in the cases of D≤3, and its 
degradation becomes worse as the magnitude of the NLOS 
error increases in high NLOS environments. In contrast, for 
cases where D≥4, using classification always gives almost the 
optimum performance in all considered NLOS environments. 
In other words, one can depend on the classification only 
when it estimates the LOS dimension as D ≥4.  Note that 
depending on the specific network layout, classification 
performs well if there is a minimum required number of LOS 
BSs properly distributed for reliable MS position estimation. 

For the examined network layout, the modified algorithm 
utilizes classification when the LOS dimension is D ≥4, but 
when D≤3 it includes all the BSs in the localization process in 
order to benefit from the inherent error cancellation when 
there are co-linear NLOS BSs.  

Simulations are performed to assess the improvement of 
location accuracy achieved using the modified algorithm. The 
modified algorithm is examined and compared with the 
classification-based and non-classification approaches. The 
number of NLOS BSs and their position are randomly chosen 
between 0 and 7. The CDF plots are shown in Figure 7. 

Similar to the classification algorithm, when there are 
enough LOS BSs, the modified algorithm has a high 
likelihood of getting small location error. Moreover, when the 
performance of the classification algorithm starts to degrade 
by getting very large location error values, the modified 
algorithm takes advantage of error cancellation by including 
all BSs in the localization process, which limits the location 
error as shown in the CDF plots.  

Another way of looking at this performance improvement 
using the modified algorithm is shown in Figure 8. In this 
figure, the effect of varying the number of the NLOS BSs on 
the average location error using the modified algorithm is 
shown and compared to the cases with and without full 
classification. 

 
Figure 8.  Illustration of the improved performance of the 

modified algorithm which tracks the best of both approaches, 
with and without NLOS BS classification. 
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VIII. CONCLUSION 
The localization of an MS can have significant errors when 

NLOS measurements are present. The impact of the relative 
position of the BSs on the localization geometry was carefully 
studied. Classification algorithm based on residual testing was 
used to mitigate the effect of the NLOS error. The RT 
determines the LOS dimension and simultaneously identifies 
the LOS BS. The performance of the classification algorithm 
has been examined when D≤3 and proved that in this 
situation, using classification will destroy the accuracy of 
localization.  

A modified classification algorithm was proposed and 
implemented. The main characteristic of the proposed 
algorithm is the selection between the classification algorithm 
and the un-classified one. If the estimated LOS dimension is 
D≥4, classification is used and if the estimated dimension is 
D=3, all BSs will be used in the localization process. This 
modification limits any potential error due to the use of a 
small number of BSs, and at the same time gains the 
advantage of canceling the error of co-linear BSs. Simulations 
showed that this modification improves the localization 
performance dramatically. 
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