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Abstract 

 
Single Parity Check (SPC) product codes are 

simple yet powerful codes that are used to correct 
errors and/or recover erasures. The focus of this paper 
is to evaluate the performance of such codes under 
erasure scenarios and to develop a tight upper bound 
for the post-decoding erasure rate. Closed form exact 
expressions are derived for up to seven erasures. The 
derived expressions are verified using exhaustive 
search. A bound is used to account for eight erasures 
and above. The developed expressions improve the 
evaluation of the recoverability of SPC product codes 
without the need for simulation or exhaustive search. 

I.  INTRODUCTION 
Product codes were introduced by Elias in 1954. 

They represent the first method capable of achieving 
error-free coding with a nonzero code rate [1]. They 
are powerful codes that can be used to correct errors or 
recover erasures. Product codes are widely used in 
data-storage, optical and wireless applications. Product 
codes are useful in certain wireless network systems 
where packet information with a header is transmitted 
over a noisy channel like ATM cell wireless 
transmission [2]. 

Single-parity-check (SPC) product codes are the 
simplest form of two-dimensional product codes. A 
single parity bit is added at the end of every row and 
every column as depicted in Figure 1. The two-
dimensional encoding scheme allows many patterns of 
lost cells to be recovered. This in turn results in 
significant reduction in the post-decoding cell loss rate. 

SPC product codes have a minimum distance of four 
and hence using iterative decoding, all erasures of 
order three or less can be recovered. The code can 
recover many erasure patterns beyond those with the 
number of erasures determined by the minimum 
distance. Judging the erasure recovery performance of 
a product code based on its minimum distance is 
pessimistic. The work in [2] considered developing 
exact form for the post-decoding cell loss recovery for 
up to 5 errors. In [3-5] a procedure is proposed to 

perform recoverability analysis for the SPC product 
codes and to develop a tight bound. In this paper, exact 
expressions for up to seven erasures are developed and 
a tight bound is proposed to account for eight erasures 
and above. 

The next section introduces the SPC product code 
model and its parameters. Performance analysis is 
detailed in section 3. Verification of the analysis and 
results is done next. The paper concludes by 
summarizing the main findings of this research. 

II. SPC PRODUCT CODE MODEL  
Cells that are received in error and cannot be 

corrected are erased and their location is stored in the 
recovery system. Without loss of generality, we use 
cells with the minimum size of one bit. Error detection 
and erasure location storage is performed through 
additional coding and headers check. 

The cells are arranged into M rows and N column. 
The recovery process is repeated iteratively rows then 
columns and so on until no cells can be recovered. The 
performance of the recovery system is function of the 
following parameters: 

i    = number of lost cells in the matrix before recovery. 
Ai  = number of unrecoverable patterns with i lost cells. 
ei   = average number of cells in error after recovery. 
P   = cell loss probability. 
Pi  = post decoding (recovery) cell loss probability. 
 

 
Figure 1.  Two-dimensional encoding matrix with unrecoverable 

4-error pattern 
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The post decoding cell loss probability is given by 
[3]  
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The details for finding ei and Ai for different values of i 
are discussed in the next section. 

III. PERFORMANCE ANALYSIS  
In this part, we derive closed form expressions for 

ei and Ai for up to seven errors. An upper bound is 
developed for more than eight lost cells. 

The number of unrecoverable patterns with 1, 2, or 3 
errors is zeros because they can be completely 
recovered. (A1 = A2 = A3 = 0). Hence, the summation in 
(1) starts from 4 rather than from 1. 

The only unrecoverable 4-cell pattern occurs when 
the four cells make a rectangle as shown in the Figure 
1. All the four cells are lost. The number of possible 
unrecoverable patterns is given as 
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For unrecoverable 5 error patterns, four errors have 
to make a rectangle shape. The fifth erasure is 
recoverable and it may occur in any of the remaining 
(MN-4) choices. Hence, 
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A.  Recoverability of Six Lost Cells 

There can be two scenarios to have six cells 
unrecoverable patterns. They are either the six are not 
recoverable or only four are unrecoverable. 

 
Unrecoverable six cells in a rectangle, A6a.  

 
Figure 2.  Unrecoverable 6-error rectangular pattern 

For all the six cells to be unrecoverable four cells must 
make a rectangle and the other two are in parallel with 
rectangle as illustrated in Figure 2. The two in parallel 
means that they are in front of each other and in the 
same two rows or two columns where the rectangle is 
located. To have the other two errors in the same row 
and in the existing two columns “R case” then we need 

to choose one row from (M-2) where the two columns 
are fixed. Alternatively, to have the two errors in the 
same column and in the existing two rows “C case” the 
lost cells need to be in one column from (N-2) and we 
have fixed two rows. However, in this shape, There are 
three rectangles and any one of them can be considered 
as the main rectangle. Therefore, we divide by three 3, 
and the number of patterns is given by 
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Unrecoverable Six Cells with a Missing Corner for 
Two Rectangles, A6b. This scenario occurs when the 
lost cells form two rectangles sharing a missing 
erasure.  Figure 3 depicts all cases of this scenario for a 
3 by 3 matrix. The lost cells indicated by  X1 and X2 
have to be in the same column and any two 
rows:

1 2
N M⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. The cells represented by X3 and X4 are 

in the same row and in a row and columns not used by 
X1 and X2. The total number of scenarios for X3 & X4 
are  2 1

1 2
M N− −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. The cells X5 and X6 can be located 

in any of the two remaining diagonals. The total 
number of possible scenarios is given in (5) where we 
need to divide by three because the pairs of lost cells 
can be interchanged. 
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where we have used the following identity 
1 1

1 2 2 1
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X1  X6  X1 X5  
X2 X5   X2  X6 
 X3 X4   X3 X4 
 (a)    (b)  
 X3 X4   X3 X4 
X1  X6  X1 X5  
X2 X5   X2  X6 
 (c)    (d)  
X1  X6  X1 X5  
 X3 X4   X3 X4 
X2 X5   X2  X6 
 (e)    (f)  

Figure 3.  Unrecoverable 6-error with two rectangles missing a 
shared corner 
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Two Out of Six Cells are Recoverable, A6c. To be able 
to recover two cells in errors, then they can be in any 
where except the four in rectangle  and they should not 
be in the case 6aA  (“R nor C”). So, 
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Therefore, the total number of unrecoverable patterns 
is the sum of A6a, A6b, and A6c. While the number of 
cells in error after decoding is the average of the three 
cases and it is given below. 
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B. Recoverability of Seven Cells  

There can be three scenarios to have unrecoverable 
patterns with seven erasures. They are all the seven 
will remain in error, six will remain in error and one is 
recovered, and four remain in error and three are 
recovered. 
Seven Unrecoverable Cells, A7a. All the seven cells 
will be lost if six cells are located as in 6bA and the 7th 
is filling a missing corner and it can be in any of three 
locations as illustrated by Figure 4. 
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An alternative way to get the same result is shown in 
Figure 5. The main four cells must make a rectangle 
and the other three cells form a rectangle with one of 
the main four cells, i.e. the four Xs form the main 
rectangle and k, m, s, and one X form a second 
rectangle. For k, it needs to be in a free column and in 
one of the two occupied rows by the main rectangle. 
For s, it is the opposite of k. Then for m, it has only 
one place. After that we need to divide by two (2) 
because in this shape we have two rectangles and any 
one of them can be the main rectangle which results in 
the same expression as in (8). 
 
Six in Lost and One Recoverable, A7b.  The six cells in 
errors have the same pattern of 6aA while the 
recoverable cell “k” can be any where else rather the 
six cells (MN-6). Also, the six cells in errors have the 
same pattern of 

6bA  and the 7th cell can be any where 

else except these six cells and the three missing 
corners. 
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Four Lost and Three are Recoverable, A7c.  To be 
able to recover three cells in errors, then they can be in 
any where except the four in rectangle 4

3
MN −⎛ ⎞
⎜ ⎟
⎝ ⎠

 and 

they should not be in the above two cases. 

 

 
Figure 4. Six cells as in 6bA and the 7th 

 

 
Figure 5. Another way to look at 7 cell 

 

 
Figure 6. Six in errors and one recoverable 
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Therefore, the total number of unrecoverable patterns 
is the sum of A7a, A7b, and A7c. While the number of 
cells in error after decoding is the average of the three 
cases and it is given below. 
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C. Recoverability of Eight Cells and Above 

For a pattern to be unrecoverable (either all the 
cells or some), there must be three cells forming a 
right-angle shape. Recoverability analysis for higher 
numbers of erasures is tedious and we resort to using 
upper bound on the performance. We assume that all 
erasure patterns are unrecoverable and it is further 
assumed that in this case not all the cells will be 
recovered. For this upper bound, 
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IV. RESULTS & ANALYSIS 
To verify the previous expressions an exhaustive 
simulation was performed where all the possible 
permutation for a specific number of erasures are 
generated and decoded. The number of lost cells after 
recovery agrees with the developed algorithms for all 
examined scenarios.  Table1 summarizes the result for 
different values of M and N. Those expressions can be 
used to judge the performance of SPC product codes.  

V. CONCLUSION 
Mathematical expressions for the recoverability of up 
to seven errors were derived and verified. In addition, 
an upper bound limits the number of unrecoverable 
patterns for the case of more than seven errors. 
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TABLE 1: SUMMARY OF POST DECODING LOST CELLS. 

M*N i e A 
3*3 4 4 9 

5 4 45 
6 4.2857 84 
7 6.5 36 

3*4 4 4 18 
5 4 144 
6 4.1707 492 
7 4.7273 792 

4*4 4 4 36 
5 4 432 
6 4.1212 2376 
7 4.4314 7344 

4*5 4 4 60 
5 4 960 
6 4.0939 7240 
7 4.313 32720 

5*5 4 4 100 
5 4 2100 
6 4.0755 21200 
7 4.2417 132300 
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