- 14.1 The scattering function $S(\tau; \lambda)$ for a fading multipath channel is nonzero for the range of values $0 \le \tau \le 1$ ms and -0.1 Hz $\le \lambda \le 0.1$ Hz. Assume that the scattering function is approximately uniform in the two variables.
 - a) Give numerical values for the following parameters:
 - (i) The multipath spread of the channel.
 - (ii) The Doppler spread of the channel.
 - (iii) The coherence time of the channel.
 - (iv) The coherence bandwidth of the channel.
 - (v) The spread factor of the channel.
 - b) Explain the meaning of the following, taking into consideration the answers given in (a):
 - (i) The channel is frequency-nonselective.
 - (ii) The channel is slowly fading.
 - (iii) The channel is frequency-selective.
 - c) Suppose that we have a frequency allocation (bandwidth) of 10 kHz and we wish to transmit at a rate of 100 bits/s over this channel. Design a binary communication system with frequency diversity. In particular, specify
 - (i) The type of modulation.
 - (ii) The number of subchannels.
 - (iii) The frequency separation between adjacent carriers.
 - (iv) The signaling interval used in your design.
 - Justify your choice of parameters.
 - 14.2 Consider a binary communication system for transmitting a binary sequence over a fading channel. The modulation is orthogonal FSK with third-order frequency diversity (L = 3). The demodulator consists of matched filters followed by square-law detectors. Assume that the FSK carriers fade independently and identically according to a Rayleigh envelope distribution. The additive noises on the diversity signals are zero-mean Gaussian with autocorrelation functions $\frac{1}{2}E[z_k^*(t)z_k(t+\tau)] = N_0\delta(\tau)$. The noise processes are mutually statistically independent.
 - a) The transmitted signal may be viewed as binary FSK with square-law detection, generated by a repetition code of the form

$$1 \to \mathbf{C}_1 = [1 \ 1 \ 1], \qquad 0 \to \mathbf{C}_0 = [0 \ 0 \ 0]$$

Determine the error rate performance P_{2h} for a hard-decision decoder following the square-law-detected signals.

- b) Evaluate P_{2h} for $\bar{\gamma}_c = 100$ and 1000.
- c) Evaluate the error rate P_{2s} for $\tilde{\gamma}_c = 100$ and 1000 if the decoder employs soft-decision decoding.
- d) Consider the generalization of the result in (a). If a repetition code of block length L (L odd) is used, determine the error probability P_{2h} of the hard-decision decoder and compare that with P_{2s} , the error rate of the soft-decision decoder. Assume $\bar{\gamma} \gg 1$.
- 14.3 Suppose that the binary signal $\pm s_l(t)$ is transmitted over a fading channel and the received signal is

$$r_l(t) = \pm a s_l(t) + z(t), \qquad 0 \le t \le T$$

where z(t) is zero-mean white Gaussian noise with autocorrelation function

$$\phi_{zz}(\tau) = N_0 \delta(\tau)$$

The energy in the transmitted signal is $\mathcal{E} = \frac{1}{2} \int_0^T |s_l(t)|^2 dt$. The channel gain *a* is specified by the probability density function

$$p(a) = 0.1\delta(a) + 0.9\delta(a-2)$$

- a) Determine the average probability of error P_2 for the demodulator that employs a filter matched to $s_l(t)$.
- b) What value does P_2 approach as \mathcal{E}/N_0 approaches infinity?
- c) Suppose that the same signal is transmitted on two statistically *independently* fading channels with gains a_1 and a_2 , where

$$p(a_k) = 0.1\delta(a_k) + 0.9\delta(a_k - 2), \qquad k = 1, 2$$

The noises on the two channels are statistically independent and identically distributed. The demodulator employs a matched filter for each channel and simply adds the two filter outputs to form the decision variable. Determine the average P_2 .

- d) For the case in (c) what value does P_2 approach as \mathcal{E}/N_0 approaches infinity?
- 14.4 A multipath fading channel has a multipath spread of $T_m = 1$ s and a Doppler spread $B_d = 0.01$ Hz. The total channel bandwidth at band-pass available for signal transmission is W = 5 Hz. To reduce the effects of intersymbol interference, the signal designer selects a pulse duration T = 10 s.
 - a) Determine the coherence bandwidth and the coherence time.
 - b) Is the channel frequency selective? Explain.
 - c) Is the channel fading slowly or rapidly? Explain.
 - d) Suppose that the channel is used to transmit binary data via (antipodal) coherently detected PSK in a frequency diversity mode. Explain how you would use the available channel bandwidth to obtain frequency diversity and determine how much diversity is available.
 - e) For the case in (d), what is the *approximate* SNR required per diversity to achieve an error probability of 10^{-6} ?
 - f) Suppose that a wideband signal is used for transmission and a RAKE-type receiver is used for demodulation. How many taps would you use in the RAKE receiver?
 - g) Explain whether or not the RAKE receiver can be implemented as a coherent receiver with maximal ratio combining.
 - h) If binary orthogonal signals are used for the wideband signal with square-law postdetection combining in the RAKE receiver, what is the *approximate* SNR required to achieve an error probability of 10^{-6} ? (Assume that all taps have the same SNR.)
 - 14.11 A DS spread spectrum system is used to resolve the multipath signal components in a two-path radio signal propagation scenario. If the path length of the secondary path is 300 m longer than that of the direct path, determine the minimum chip rate necessary to resolve the multipath components.