King Fahd University of Petroleum & Minerals

Electrical Engineering Department EE370: Communications Engineering I (101)

Major Exam I

November 4, 2010 10:00-11:30 AM Building 59-2002

 Question
 Mark

 1
 /10

 2
 /10

 3
 /10

 Total
 /30

Instructions:

- 1. This is a closed-books/notes exam.
- 2. The duration of this exam is one and half hours.
- 3. Read the questions carefully. Plan which question to start with.
- 4. <u>CLEARLY LABEL ALL SIGNIFICANT VALUES ON BOTH AXIES OF ANY</u> <u>SKETCH</u>
- 5. Work in your own.
- 6. Strictly no mobile phones are allowed.

Good luck

Dr. Ali H. Muqaibel

Problem 1: (10 points)

Choose the **<u>best</u>** answer. Do not circle. Write the answer <u>clearly</u> in the table below

- 1) The most suitable method for detecting a DSB-SC modulated signal is using:
 - a) Envelope detector
 - b) Synchronous detector
 - c) Non-coherent detector
 - d) Costas loop
 - e) Both **a** and **c**
- 2) The following is <u>not</u> an objective of modulation
 - a) Frequency division multiplexing
 - b) Effective radiation
 - c) Control the antenna size
 - d) Increase the signal power
 - e) Change the frequency band of the signal
- 3) The following is/are <u>not</u> usually found in a phased locked loop (PLL).
 - a) Voltage controlled oscillator
 - b) Low pass filter
 - c) Multiplier
 - d) Full wave rectifier
 - e) Both **b** & **d**
- 4) The following is <u>true</u> about VSB modulation
 - a) requires less bandwidth than SSB.
 - b) requires double the bandwidth of QAM
 - c) more bandwidth efficient than DSB-SC
 - d) more bandwidth efficient than AM (DSB+C)
 - e) both $\mathbf{c} \& \mathbf{d}$ are correct
- 5) For a distortion less transmission, A system must have a frequency response with
 - a) Constant amplitude and linear phase
 - b) Constant amplitude and constant phase
 - c) Linear amplitude and linear phase
 - d) Liner amplitude and constant phase
 - e) Liner delay and constant phase

Question	1	2	3	4	5
Answer					

- 6) An AM *superheterodyne* receiver is tuned to a carrier frequency of 800 kHz. If the tuning frequency of the Intermediate Frequency (IF) stage is 455 kHz, what is **the local oscillator frequency at the mixer** (frequency converter)? <u>and</u> what is **the image station** (2 points)
- 7) Find the **power**, **rms** value, and **energy** of the shown **periodic** signal (show steps) (3 points)

Problem 2: (10 points)

A SSB signal is generated from a massage $m(t) = 2 \cos(100t) + 4 \cos(200t)$ using a carrier frequency $\omega_c = 1000 \text{ rad/sec}$

a) Write down $M(\omega)$ and plot the spectrum of m(t), i.e., $M(\omega)$. (2 points)

b) Find the Hilbert Transform of m(t).

(1 point)

c) Write down the LSB signal in time domain, i.e., $\phi_{LSB}(t)$. Plot the spectrum of $\phi_{LSB}(t)$. (3 points)

d) A SSB+C (SSB signal plus carrier) is generated by adding a carrier of amplitude A. Such a signal can be expressed as Ø_{LSB+C}(t) = A cosω_ct + m(t)cosω_ct + m_h(t)sinω_ct
 For the given m(t), find the power efficiency η of the resultant SSB+C signal as function of A. What is the efficiency when A=10. (3 points)

e) In SSB+C, what is the condition on *A* relative to *m*(*t*) that allows for envelope detection and what is the impact on the efficiency (1 points)

Problem 3: (10 points)

1. Sketch the block diagram for a QAM modulator. Show all important details. (2 points)

2. A vestigial filter $H_i(\omega)$ at the transmitter has a transfer function as shown in the Figure below. The carrier frequency is $f_c=10$ kHz and the baseband signal bandwidth is 4 kHz. Find the corresponding transfer function of the equalizer filer $H_o(\omega)$ at the receiver. *Show your steps* (3 points)

3. For the signal shown below

a) Write an expression for z(t) (2 points)

b) Use Fourier Transform Tables to find $Z(\omega)$ (3 poitns)

Short	Table of Fourier Tran	sforms			
	g(t)	$G(\omega)$		- <u>Trigonometric Identiti</u>	es
1	$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	<i>a</i> > 0	_	_
2	$e^{at}u(-t)$	$\frac{1}{a-j\omega}$	<i>a</i> > 0		
3	$e^{-a t }$	$\frac{2a}{a^2+\omega^2}$	<i>a</i> > 0	$\cos A \cos B = \frac{1}{2} [\cos (A+B) + B]$	+ cos (A-B)]
4	$te^{-at}u(t)$	$\frac{1}{(a+j\omega)^2}$	<i>a</i> > 0	$\sin A \sin B = \frac{1}{2} [\cos (A-B) -$	$-\cos(A+B)$
5	$t^{n}e^{-at}u(t)$	$\frac{n!}{(a+j\omega)^{n+1}}$	<i>a</i> > 0		•••• (11.2)]
6	$\delta(t)$	1		$\sin A \cos B = \frac{1}{2} [\sin (A+B)]$	+ sin (A- B)]
7	1	$2\pi\delta(\omega)$			
8	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$			
9	$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$			
10	$\sin \omega_0 t$	$j\pi [\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$			
11	u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$			
12	sgn <i>t</i>	$\frac{2}{j\omega}$			
13	$\cos \omega_0 t \ u(t)$	$\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{J}{\omega_0^2}$	$\frac{i\omega}{-\omega^2}$		
14	$\sin \omega_0 t \ u(t)$	$\frac{\pi}{2j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]+\frac{1}{\omega_0^2}$			
15	$e^{-at}\sin\omega_0 t \ u(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$	<i>a</i> > 0		
16	$e^{-at}\cos\omega_0 t \ u(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	a > 0		
17	$\operatorname{rect}\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc} \left(\frac{\omega \tau}{2}\right)$			
18	$\frac{W}{\pi}$ sinc (Wt)				
19	$\Delta\left(\frac{t}{\tau}\right)$	$\frac{\tau}{2}$ sinc ² $\left(\frac{\omega\tau}{4}\right)$			
20	$\frac{W}{2\pi}$ sinc ² $\left(\frac{Wt}{2}\right)$	$\Delta\left(\frac{\omega}{2W}\right)$			
Fou	rier Transform Op	oerations		1	
Oper	ration	g(t)		$G(\omega)$	
Add	ition	$q_1(t) \pm q_2(t)$		$G_{1}(\omega) + G_{2}(\omega)$	

ric Identities

n	A	sin	B =	$\frac{1}{2}[\cos{(A-B)} - \cos{(A+B)}]$	

Operation	g(t)	$G(\omega)$
Addition	$g_1(t) + g_2(t)$	$G_1(\omega) + G_2(\omega)$
Scalar multiplication	kg(t)	$kG(\omega)$
Symmetry	$\overline{G}(t)$	$2\pi g(-\omega)$
Scaling	g(at)	$\frac{1}{ a }G\left(\frac{\omega}{a}\right)$
Time shift	$g(t - t_0)$	$G(\omega)e^{-j\omega t_0}$
Frequency shift	$g(t)e^{j\omega_0 t}$	$G(\omega - \omega_0)$
Time convolution	$g_1(t) * g_2(t)$	$G_1(\omega)G_2(\omega)$
Frequency convolution	$g_1(t)g_2(t)$	$\frac{1}{2\pi}G_1(\omega)G_2(\omega)$
Time differentiation	$\frac{d^n g}{dt^n}$	$(j\omega)^n G(\omega)$
Time integration	$\int_{-\infty}^{t} g(x) dx$	$\frac{G(\omega)}{j\omega} + \pi G(0)\delta(\omega)$

Dr. Ali Hussein Muqaibel