King Fahd University of

Petroleum and Minerals

Department of Electrical Engineering
EE 315 Probabilistic Methods in Electrical Engineering
Summer Semester (103)

Exam II

Tuesday, 2 August 2011
10:00 pm - 11:30 pm

Name: \qquad
ID: \qquad
Sections:
1

Instructor: Wajih Abu-Al-Saud

Problem	Score	Out of
1		25
2		40
3		35
Total		100

Good luck!

Problem 1

A discrete random variable has the following probabilities

$$
\begin{aligned}
& P\{X=-3\}=0.1 \\
& P\{X=-1\}=0.2 \\
& P\{X=+2\}=0.4 \\
& P\{X=+5\}=0.3
\end{aligned}
$$

Find:
a) Mean of X
b) Variance of X
c) Skew of X
d) $\quad E\left[4 X^{3}-3 X^{2}+|X|\right]$
e) In a supermarket, it is found that shoppers arrive at a rate of 3 shoppers $/ \mathrm{min}$. Each cashier in the supermarket takes on average 1 minute to server each shopper. Find the minimum number of cashiers that the supermarket will have to operate so that at least 90% of its customers do NOT have to wait in line to be served (90% of shoppers will be served immediately because there is at least 1 open cashier).

Problem 2

A random variable X has the pdf shown to the right. Another random variable Y is obtained by transforming X using the transformation

$$
Y=\left\{\begin{array}{ll}
X^{2}+1 & \text { for } X<-1 \\
2 X+4 & \text { for } X>-1
\end{array} .\right.
$$

Find the PDF of the random variable Y for all values $-\infty<y<\infty$. Write the PDF of Y in the form of a single piecewise defined function $f_{Y}(y)= \begin{cases}\ldots & \ldots<y<\ldots \\ \ldots & \ldots<y<. .\end{cases}$

Problem 3

The joint PDF function of two random variables X and Y is given by

$$
f_{X, Y}(x, y)= \begin{cases}A\left(2 x^{2} y+x\right) & 0<x \leq 2 \text { and } 0<y \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

Find:
a) Value of A that makes this function a valid PDF function.
b) $F_{X, Y}(x, y)$ for all values of $-\infty<x<\infty$ and $-\infty<y<\infty$
c) $F_{X}(x)$ for all values of $-\infty<x<\infty$
d) $f_{Y}(y)$ for all values of $-\infty<y<\infty$
e) $P(1 \leq X<3, \quad 0.5 \leq Y<2)$

