Cha	pter I: Signal and System Modeling Concepts
ote Title	
	Learning Objectives:
	Define signals and systems
	Examples of systems
	Systems and subsystems
	Signal Models (Signal Classification)
	Determinestic/ random
	Continuous/ discrete Time Continuous/ discrete Amplitude (Analog/Digital)
	Periodic/ non eriodic
	Power/ energy
	Important Signals (delta, step, unit sawtooth, sinusoidal, singularity)
	Power and Energy of signals
	Represeantaiton of signals
	Time domain
	Phasore and Frequency domain

1.1 Introduction

System:

Combination and interconnecting of several components to perform a desired task. (linear Systems).

Signal:

A function of time that represents a physical variable of interest associated with a system.

The concept is general for Mechanical Engineering, Electrical...etc. However, most signals are converted to voltage & current before processing.

1.2 Examples of Systems

Examples in the text are not very relavent concentrate on Examples (1-2) & (1-3) You do not have to understand all the details in this section.

integrator input $\longrightarrow \int \lambda \mathcal{L} \longrightarrow$ output
 Another Example communication link
source communication sink

Systems and sub	systems		
		system	speaker
		y y	-
antenna system			
	speaker	amplifier _	filter
Radio			
		53	
		subsystems	
Understanding t	ne systems help in desig	n and modeling	
1.3 Signal M	Odels (Signal Classi	ications)	
Dotorministic sig	nale are modeled as com	plathy aposition fun	ctions of time
Deterministic sign	are modeled as con	pletty specified full	
Random signals t	ake random values at an	y given time instant	t and most be modeled
probabilistically.			
Examples for deter	ministic signals		
	At^2		$(+) \rightarrow +$
	R++2		····
Example of a rand	dom signal (figure 1-6).		hat comes after is reader
4		VV	
2			5
		$\Lambda \Lambda$	A St.
			f_{MN}
2 0 - 2			$f_{\rm Mp}$
2 0 - 2 4			$f_{\rm Mp}$, t
2 0 - 2 4			$f_{\rm MPV}^{\rm i}$ t

3. Unit Step function	
	$u[n] = \{1, n\}$
$u(t) = \begin{cases} 0 & t < 0 \\ 1 & t > t \end{cases}$	$ \longrightarrow t $
continuous	discrete
Is the sum of two or more sinusoid The sum is periodic if their periods frequencies are commensurable	ds periodic? s can be expressed as a rational number or their
(There is <i>f</i> _o such that	$f_1 = r_1 f_0$ $k = r_2 f_0$ $h_1 h_1$
Example 1.6	9
(a) x,(t) = sin 10 Tit	only (c) is not periodic
(6) n_(t) = Sin 20 Tt	$\overline{T_{a}} = \frac{271}{4}$
(c) $x_3(t) \ge 5in 3/t$	~~ •
$(d) n_{y}(t) = n_{y}(t) + n_{z}(t)$	
(c) $x_{5}(t) = x_{7}(t) + y_{3}(t)$) _/
Phasor Signals and Spectra	
Physical systems interact with rea representation. We can use phase	al signals. Complex quantities are used for ors to represent Sinusoidal quantities
	$\vec{X} = A \vec{C} = A \vec{L}^2$
all means $x(t) = Re$	$-(\vec{X} e^{i\omega_c t}) = A \cos(\omega_s t t d) - \infty < t$

It is characterized by three quantities
amplitud A phase θ and frequency $\lambda_s > 0$
Euler Theorem $c = cos \theta \pm f sin \theta$
$652 = \frac{1}{2} \begin{bmatrix} 32 & -52 \\ C + C \end{bmatrix} \text{ add}$
$S_{in} Q = \frac{1}{2j} \begin{bmatrix} Q & -J \\ C & -C \end{bmatrix}$ subtract
We can also write the real part as $\widetilde{\pi}^{\sharp}(t)$ is the conjugate of $\widetilde{\pi}(t)$ $\widetilde{\pi}(t)$
$\frac{1}{2} = \frac{1}{2} + \frac{1}$
We can use Cartesian representation
$\chi = a + ib = R e^{i\partial} = R \cos \theta + j R \sin \theta$
 Cartesian representation is good for addition and subtraction while, polar is good for multiplication and division.
An alternative representation is the frequency domain representation
A cos (wt + 2) Amplitude phase phase
 anditude 5
$ \begin{array}{c} & & \\ & & $

	Amplitude	Phase
 Double Sided Spectra	$\frac{A}{z} \rightarrow f$	-f. f. f.
 Important points about double-si	ded spectra	
 1) we use (negative frequency) or doub two conjugates to get the real function	ble sided spectra to illustrate the	e fact that we need to add
 2) for any real signal, amplitude spectrophase spectrum has odd symmetry.	um has even symmetry.	
 3) double side spectrum is directly rela single side is related to trigonometric re	ted to exponential representation	on.
 To represent any other signal in freque sum of cosines.	ncy domain, we have to conver	rt the signal into cosine or
 for Example if we want to represen	t sin(wf+2) , we	
 Sin	$(w_s t + 0) = cos(w)$	$t_{t} + \theta - \frac{\pi}{2}$
1		

EXAMPLE 1-7

We wish to sketch the single-sided and double-sided amplitude and phase spectra of the signal

$$x(t) = 4\sin\left(20\pi t - \frac{\pi}{6}\right), \quad -\infty < t < \infty$$
 (1-30)

To sketch the single-sided spectra, we write x(t) as the real part of a rotating phasor and plot the amplitude and phase of this phasor as a function of frequency for t = 0. Noting that $\cos(u - \pi/2) = \sin u$, we find that

$$x(t) = 4 \cos\left(20\pi t - \frac{\pi}{6} - \frac{\pi}{2}\right)$$

= $4 \cos\left(20\pi t - \frac{2\pi}{3}\right)$
= $\operatorname{Re}\left\{4 \exp\left[j\left(20\pi t - \frac{2\pi}{3}\right)\right]\right\}$ (1-31)

16 Ch. 1 / Signal and System Modeling Concepts

which results in the amplitude and phase spectral plots shown in Figure 1-11a. To plot the doublesided amplitude and phase spectra, we write x(t) as the sum of complex conjugate rotating phasors. Recalling that 2 cos $u = \exp(ju) + \exp(-ju)$, we obtain

$$x(t) = 2 \exp\left[j\left(20\pi t - \frac{2\pi}{3}\right)\right] + 2 \exp\left[-j\left(20\pi t - \frac{2\pi}{3}\right)\right]$$
(1-32)

17

from which the double-sided amplitude and phase spectral plots of Figure 1-11b result.

Singularity Functions (aperiodic subclass of signals) $u(t) = u_{1}(t) = \begin{cases} 0 & t < 0 \\ 1 & t > 0 \end{cases}$ at t = 0, finite ! 1) Unit step function $u_{i}(t) = \int u_{i}(x) dx$, i = ..., -2, -1, 0, 1, 2, ...2) Unit ramp Function $U_{2}(t) = r(t) = 0$ t < 03) Unit parabolic function $\frac{t^{2}}{2^{2}}$ $\frac{t^{2}}{2^{2}}$ $\frac{t^{2}}{2^{2}}$ $\frac{t^{2}}{2^{2}}$ **Time Operations** Time shifting $t = t - \frac{1}{2}$ shift to the right. $t = t + \frac{1}{2}$ shift to the lift. $t = t + \frac{1}{2}$ shift to the lift. $\mu(t - \frac{1}{2}) = \frac{1}{1}$ $t - \frac{1}{2} > 0$ $right = \frac{1}{2}$ $right = \frac{1}{2}$ $right = \frac{1}{2}$ Time revisal (folding) -t $t \le 0$ Emple $r(-t) = \begin{bmatrix} 6 & t > 6 \end{bmatrix}$

Summary of time operation	ns)	$r(\beta t + \alpha) = \pi \left[\beta (t + \alpha / \beta)\right]$
iチ <u>ぺ</u> た。 is pos negati	tive shift lift. ve shift right.	
$\beta < \circ$ time re	versal or reflection	
$i \neq \beta > 1$, -	r (t) is compres	sed
$ \beta < 1$ r	(t) is expanded	d.
Example 1.9	o. 20	
sketch		
(1) x, (t) = T(2t	- +6)	Sec figure 1.14 p.2
(b) m(t) - cos (2	о Л + -5 Л)	0
(c) n3(t) - r (-	0.5 + 2)	
		(a)
		$\cos(20\pi t - 5\pi)$ \rightarrow 0.1 s
		(6)
		r(-0.5t + 2)
		3
		0 1 2 3 4
		(c) FIGURE 1-14. Signals relating to Example 1-9.

power is the rate of energy per time 1.4 Energy and Power Signals lets assume that c(t) is the voltage signal applied across aresistor R and producing a current ilt) p(t) = e(t) i(t) = i² (t) per ohn = normalized R $= \mathcal{R} = 1$ for a signal x(t), the total Energy normalized to a unit resistance $E \stackrel{()}{=} \lim_{T \to \infty} \int_{T} |\mathcal{R}(t)|^2 dt \quad Jouto$ $P \stackrel{2}{=} \lim_{t \to 0} \frac{1}{2T} \int |z(t)|^2 dt \quad \text{watter}$ $o < E < \infty \Rightarrow p_{-}0$ * x(t) is an energy signal if and only if のくりくぶ ゴ) [この is a power signal if and only if $2 \times x(t)$ B¥ n(t) could beniether energy nor power signal; but it can not be both at the same time. Example 1-11 $x_{1}(t) = A e^{-\alpha t} u(t) \quad \alpha > 0 \quad E = \frac{A^{2}}{2}$ 1-12 x $(t) = A \cos(w_0 t + \Theta)$

Average Power of Periodic Signals	
$P = \frac{1}{2} \int \chi(t) ^2 dt$	one period
see Example 1-13 p 30 power of rotating pharos signal $A e^{j(w_b t \neq \partial)}$ Using Euler's theorem $e^{j\theta} = \cos(\theta) + j\sin(\theta)$	_ A ²
 1.6 is about Matlab p 32 In this section (1.6) you will find Matlab functions for unit step, un 	it impulse & unit ramp.
There is a good summary at the end of the Chapter (See p. 3	35)