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Chapter I: Signal and System Modeling Concepts

Learning Objectives:

Define signals and systems
Examples of systems
Systems and subsystems
Signal Models (Signal Classification)
Determinestic/ random
Continuous/ discrete Time
Continuous/ discrete Amplitude (Analog/Digital)
Periodic/ non eriodic
Power/ energy
Important Signals (delta, step, unit sawtooth, sinusoidal, singularity...)
Power and Energy of signals
Represeantaiton of signals
Time domain
Phasore and Frequency domain




1.1 Introduction

System:

Combination and interconnecting of several components to perform a desired task.

(linear Systems).

Signal:

A function of time that represents a physical variable of interest associated with a

system.
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> output Signals

The concept is general for Mechanical Engineering, Electrical...etc.
However, most signals are converted to voltage & current before processing.

1.2 Examples of Systems

Examples in the text are not very relavent concentrate on Examples (1-2) & (1-3)
You do not have to understand all the details in this section.
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Systems and subsystems
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Understanding the systems help in design and modeling

1.3 Signal Models (signal Classifications)

Deterministic signals are modeled as completly specified functions of time.

Random signals take random values at any given time instant and most be modeled

probabilistically.

-xamples for deterministic signals
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Example of a random signal ( figure 1-6).
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a quantized signal is one whose values may assume only a countable number of values
(levels).
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Figure 2.5 Examples of signals. (a) Analog, continuous time. (b} Digital, continuous time. (c) Analog, discrete
time. (d) Digital, discrete time.



Periodic / Aperiodic

A signal is periodic if and only if
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To: fundamental period is the smallest value that satisfies the equation.

example of, a periodic signal is
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We know that adding 2pi does not change the Sin or Cos functions



Popular examples of periodic signals (figure 1.8)
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3. Unit Step function
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Is the sum of two or more sinusoids periodic?

The sum is periodic if their periods can be expressed as a rational number or their
frequencies are commensurable
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Phasor Signals and Spectra

Physical systems interact with real signals. Complex quantities are used for
representation. We can use phasors to represent Sinusoidal quantities
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It is characterized by three quantities
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We can use Cartesian representation
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Cartesian representation is good for addition and subtraction
while, polar is good for multiplication and division.

An alternative representation is the frequency domain representation
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Single Sided Spectra
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A
—_— - 02: " ‘_f:’

)

“v< @

Double Sided Spectra
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Important points about double-sided spectra

1) we use (negative frequency) or double sided spectra to illustrate the fact that we need to add
two conjugates to get the real function

2) for any real signal, amplitude spectrum has even symmetry.
phase spectrum has odd symmetry.

3) double side spectrum is directly related to exponential representation.
single side is related to trigonometric representation

To represent any other signal in frequency domain, we have to convert the signal into cosine or
sum of cosines.

for Example if we want to represent sin( 4 1 Q) WA
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EXAMPLE 1-7

We wish to sketch the single-sided and double-sided amplitude and phase spectra of the signal

(1) = 4sin(2'.']m' = E_) —m << ®

(1-30)

To sketch the single-sided spectra, we write x(1) as the real part of a rotating phasor and plot the
amplitude and phase of this phasor as a function of frequency for r = 0, Noting that cos(u — m/2) =

sin u, we find that
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FIGURE 1-11. Amplitude and phase spectra for Example 1-6.

(1-31)

which results in the amplitude and phase spectral plots shown in Figure 1-11a. To plot the double-
sided amplitude and phase spectra, we write x(f) as the sum of complex conjugate rotating phasors.

Recalling that 2 cos u = exp(ju) + exp(—ju), we obtain
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from which the double-sided amplitude and phase spectral plots of Figure I-11b result.

(1-32)
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FIGURE 1-12. Spectra for Example 1-7.



Singularity Functions (aperiodic subclass of signals)
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FIGURE 1-14. Signals relating to Example 1-9.



Example 1.10

Express the signals shown in terms of singularity functions
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FIGURE 1-15. Signal to be expressed in terms of singularity functions.
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Some properties of unit impulse function
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sifting property:
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power is the rate of
energy per time

1.4 Energy and Power Signals
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Average Power of Periodic Signals
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Using Euler's theorem
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1.6 is about Matlab p 32

one period

In this section (1.6) you will find Matlab functions for unit step, unit impulse & unit ramp.

There is a good summary at the end of the Chapter (See p. 35)



