King Fahd University of Petroleum \& Minerals
Electrical Engineering Department
EE207: Signals and Systems (111)
Quiz 3: Fourier series
Dr. Ali Muqaibel
Name:

For the shown periodic signal $f(t)$, the trigonometric Fourier series is given by

$$
f(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(2 \pi n f_{0} t\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(2 \pi n f_{0} t\right)
$$

Find $a_{0}, a_{3}, a_{4}, b_{1}, b_{2}$. (Show steps or reasoning)

$a_{0}=0.5$ average value by inspection.
$b_{1}=b_{2}=0$ because the given function is even.
$a_{4}=0$ because the signal is similar to the cases of half wave odd symmetry with dc shift $\left(a_{0}\right)$
$T=2 \pi=>\omega=1$
$a_{n}=\frac{2}{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos (n t) d t=\frac{1}{\pi n}[\sin n t]_{-\frac{\pi}{2}}^{-\frac{\pi}{2}}=\frac{1}{\pi n}\left(\sin \left(\frac{n \pi}{2}\right)-\sin \left(\frac{-n \pi}{2}\right)\right)=\frac{2}{\pi n} \sin \left(\frac{n \pi}{2}\right)$

Clearly $\sin \left(\frac{n \pi}{2}\right)=0$ for even values of n and alternating $+1,-1$ for odd values of n.
$a_{3}=\frac{2}{\pi 3} \sin \left(\frac{3 \pi}{2}\right)=\frac{-2}{3 \pi}$

