King Fahd University of Petroleum \& Minerals
Electrical Engineering Department
EE207: Signals \& Systems (111)
Quiz 2: System Modeling in Time Domain

Dr. Ali Hussein Muqaibel

Name:

Ver. 1

A system is defined by the following input-output relationship: $\quad y(t)=5 x(t-2)+10$.
Is the system causal or non-causal? Justify your answer (no points without justifications) (2 points)
Causal because current output depends on the input before 2 seconds and not on future input.
For example $y(t=5)$ depend on $x(t=3)$

A system is defined by the following relation between the input, $x(t)$, and the output, $y(t)$: ($\mathbf{4}$ points)

$$
\frac{d y}{d t}+3 y+2 \int_{-\infty}^{t} y(\beta) d \beta=x(t)
$$

Is this system fixed or time-varying?
Is this system dynamic or instantaneous? \qquad
Is this system linear or non-linear? \qquad
What is the order of this system?........ 2 (you must first differentiate to write the relation in the standard form)

Consider a linear fixed system (LTI) with impulse response, $h(t)=\frac{1}{3} e^{-t / 3} u(t)$,
a) What is the step response?

$$
a(t)=\int_{-\infty}^{t} \frac{1}{3} e^{-\beta / 3} u(\beta) d \beta=-\left[e^{-\beta / 3}\right]_{0}^{t} u(t)=\left[1-e^{-t / 3}\right] u(t)
$$

b) What is the output if the input is $x(t)=2 u(t-5)$?

By linearity, the output will be $2\left[1-e^{-(t-5) / 3}\right] u(t-5)$

