King Fahd University of Petroleum & Minerals

Electrical Engineering Department EE207: Signals and Systems (042)

Major Exam II

May 9, 2005 06:30 PM-08:00PM Building 7-119

	Serial #	
	0	
	-2 points for not writing your serial #	
Name:		

ID:_____Key____

Sec. 1

Question	Mark
1	/12
2	/13
3	/7
4	/8
Total	/40

Instructions:

- 1. This is a closed-books/notes exam.
- 2. The duration of this exam is one and half hours.
- 3. Read the questions carefully. Plan which question to start with.
- 4. Write explicitly the formulas that you use in your solution (e.g. by KVL ... by KCL). No credit will be given if you do not show your formulas.
- 5. Work in your own.
- 6. CLEARLY LABEL ALL SIGNIFICANT VALUES ON BOTH AXIES OF ANY SKETCH
- 7. Strictly no mobile phones are allowed.

Good luck

Dr. Ali Muqaibel

Problem 1: (Pppints)

Choose (Circle) the correct answer/answers:

(4 points)

- a. If x(t) is a real and even function of time then it is Fourier transform, X(f) is (real) imaginary, complex, even odd) function of frequency.
- b. The spectrum of a non-periodic signal is (continuous in frequency) discrete in frequency).
- **c.** The energy spectral density G(f)=

$$(|X(f)|, |X(f)|^2) \int_{-\infty}^{\infty} |X(f)|^2 df , \int_{-\infty}^{\infty} |X(f)| df)$$

d. We say that a rational function is proper if the degree of the numerator polynomial is (less) equal, greater, less than or equal, greater than or equal) than the degree of the denominator polynomial.

Select True or False (Correct answer +1, Wrong answer -0.5)	(4 points)
 a. Ideal low pass filters cannot be implemented because they are non-causal. b. Many signals are not Fourier transformable. c. Fourier transform can be used to find the transient response. d. The rise time of a pulse is inversely proportional to its bandwidth. 	(True, False) (True, False) (True, False) (True, False)

A signal has Laplace transform

(Fpoints)

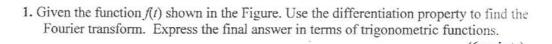
$$X(s) = \frac{s+2}{s^2 + 4s + 5}$$

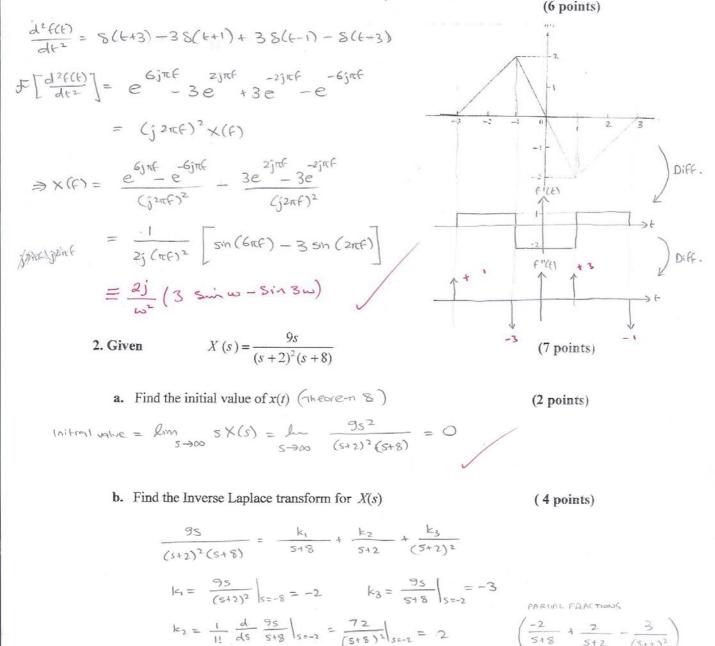
Find the Laplace transforms, Y(s), of the following signals. In each case, tell what Laplace transform theorems you used to find the signal.

(a)
$$y_1(t) = x(2t-1)u(2t-1) = x(2(t-0.5))u(2(t-0.5))$$

(b) $x(2t)u(2t)$ time scabay(b) $\frac{1}{2} \frac{5/2+2}{5/2} = \frac{5+4}{5^2+85+20}$
(c) $y_2(t) = x(t)*x(t)$ $\frac{5+4}{5^2+85+20}e^{5.55}$
(d) $y_2(t) = x(t)*x(t)$ $\frac{(5+2)}{(5^2+4.5+5)}$ consult
(c) $y_3(t) = e^{3t}x(t)$ $y_3(s) = \frac{5+3+2}{(5^2+4.5+5)}(5^2+4.5+5)$ $y_3(s) = \frac{5+3+2}{(5^2+2)^2+4(5+3)+5} = \frac{5+5}{5^2+68+44}e^{45}$
(c) $y_3(t) = e^{3t}x(t)$ $y_3(s) = \frac{5+3+2}{(5^2+4.5+5)}(5^2+4.5+5)$ $y_3(s) = \frac{5+3+2}{(5^2+4.5+5)+5} = \frac{5+5}{5^2+10.5+26}$

Problem 2: (13 points)





c. Justify your answer to part a by finding the initial value in the time domain (1 point)

 $\Rightarrow x(t) = (-2e^{-8t} + 2e^{-2t} - 3te^{-2t})u(t)$

Problem 3: (7 points)

a. Write x(t) in terms of $\Pi(t)$ and $\Lambda(t)$ (2 points)

$$\chi(t-1) = -2 \wedge \left(\frac{t}{2}\right) + \pi \left(t - \frac{5}{2}\right) + \pi \left(t + \frac{5}{2}\right) \qquad (2.0) \qquad (3.0) \qquad$$

x(t)

4

1

b. Find X(f) which is the Fourier transform of x(t) (2 points)

$$X(f) = \left(-2 \times 2 \operatorname{sinc}^{2}(2f)\right) + \left(\operatorname{sinc} f \times e^{-5j\pi f}\right) + \left(\operatorname{sinc} f \times e^{+5j\pi f}\right)$$
$$= -4\operatorname{sinc}^{2}(2f) + 2\operatorname{sinc}(f)\cos(5\pi f)$$

c. Find $X_P(f)$ which is the Fourier transform of $x_p(t)$. Note that $x_p(t)$ is the periodic extension of x(t). (7 points)

$$\sum_{m=-\infty}^{2} p(t-mT_{5}) \iff \sum_{n=-\infty}^{2} f_{5} p(nf_{5}) \delta(f-nf_{5})$$

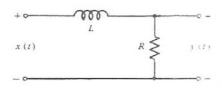
$$\sum_{n=-\infty}^{2} p(t-mT_{5}) \iff \sum_{n=-\infty}^{2} p(nf_{5}) \delta(f-nf_{5}) \qquad \text{where } f_{5} = \frac{1}{8}, T_{5} = 8$$

$$= \frac{1}{4} \sum_{n=-\infty}^{\infty} (\operatorname{sinc}(nf_{5}) \cos(\frac{5}{8} nT_{5}) - 2 \operatorname{sinc}^{2}(nf_{4})) \delta(f-nf_{5})$$

d. What are the differences between the spectra of x(t) and $x_p(t)$

(1 point)

- 1) spectra of z(E) is continous, not for xp(E)
- 2) spectra of x, (t) may be imaginary.



(1 point)

Problem 4: (8 points)

Let $R=1 \Omega$ and L=2 H

a. Write the differential equation relating y(t) to x(t) for the circuit shown in the figure. (2 points)

$$\frac{Apply EVL}{R} = -x(t) + L \frac{di(t)}{dt} + y(t) = 0 \qquad \left(i(t) = \frac{y(t)}{R}\right) \frac{by}{dt} ohm's \ bus$$

$$\Rightarrow x(t) = \frac{L}{R} \frac{dy(t)}{dt} + y(t) \qquad \left[x(t) = 2 \frac{dy(t)}{dt} + y(t)\right]$$

b. Rewrite the equation in the s-domain (Laplace transform)

$$X(s) = 2sY(s) - 2y(o^{-}) + Y(s)$$

 $X(s) = Y(s) [2s+1] - 2y(o^{-})$

c. Assuming the initial values are zeros, solve for the transfer function $H(s) = \frac{Y(s)}{X(s)}$ (1 point) where values are zeros $\implies -2y(s^{-}) = 0$

$$\Rightarrow \chi(s) = \chi(s) \left[2s+1 \right] \Rightarrow H(s) = \frac{\chi(s)}{\chi(s)} = \frac{1}{2s+1}$$

d. If the input is $x(t) = 5e^{-2t}u(t)$, find the output, y(t) (4 points)

$$\chi(t) = 5e^{-2t}u(t) \implies \chi(s) = \frac{5}{5+2}$$

$$Y(s) = H(s) \times (s) = \frac{\frac{1}{2}}{s+\frac{1}{2}} \cdot \frac{5}{s+2} = \frac{\frac{5}{2}}{(s+\frac{1}{2})(s+2)}$$

$$y(t) = \mathcal{L}^{-1} \left[Y(s) \right]$$

$$\frac{5/_2}{(s+1/_2)(s+2)} = \frac{k_1}{s+1/_2} + \frac{k_2}{s+2}$$

 $k_{1} = \frac{5/2}{5+2} \Big|_{s=-y_{2}} = \frac{5}{3} \qquad PARTIAL FRATIONS \\ \left(\frac{5/2}{5+y_{2}} - \frac{5/2}{5+y_{2}}\right) \Big|_{s=-2} = -\frac{5}{3} \qquad \left(\frac{5/2}{5+y_{2}} - \frac{5/2}{5+2}\right)$

$$y(t) = \mathcal{L}^{-1} \left[\frac{5/3}{5+\frac{1}{2}} - \frac{5/3}{5+\frac{1}{2}} \right] = \left(\frac{5}{3} e^{-\frac{1}{2}t} - \frac{5}{3} e^{-2t} \right) u(t)$$
$$= \frac{5}{3} \left(e^{-\frac{1}{2}t} - e^{-2t} \right) u(t)$$

Name: Serial #

Sec#

Name of Theorem		
 Superposition (a₁ and a₂ arbitrary constants) 	$a_1 x_1(t) + a_2 x_2(t)$	$a_1 X_1(f) + a_2 X_2(f)$
2. Time delay	$x(t-t_0)$	$X(f)e^{-j2\pi jt_0}$
3a. Scale change	x(at)	$ a ^{-1}X\left(\frac{f}{a}\right)$
b. Time reversal	x(-t)	X(-f) = X * (f)
4. Duality	X(t)	x(-f)
5a. Frequency translation	$x(t)e^{j\omega_0 t}$	$X(f-f_0)$
b. Modulation	$x(t) \cos \omega_0 t$	$\frac{X(f - f_0)}{\frac{1}{2}X(f - f_0)} + \frac{1}{2}X(f + f_0)$
6. Differentiation	$\frac{d^n x(t)}{dt^n}$	$(j2\pi f)^n X(f)$
7. Integration	$\int_{-\infty}^{t} x(t') dt'$	$(j2\pi f)^{-1}X(f) + \frac{1}{2}X(0)\delta(f)$
8. Convolution	$\int_{-\infty}^{\infty} x_1(t-t') x_2(t') dt'$	
	• - X	$X_1(f)X_2(f)$
	$=\int_{-\infty}^{\infty}x_1(t')x_2(t-t')\ dt'$	
9. Multiplication	$x_1(t)x_2(t)$	$\int_{0}^{\infty} X_{1}(f-f')X_{2}(f') df'$
		$\int_{-\infty}^{\infty} X_1(f - f') X_2(f') df'$ = $\int_{-\infty}^{\infty} X_1(f') X_2(f - f') df$

 $\omega_0 = 2\pi f_0$; x(t) is assumed to be real in 3b.

TABLE 4-1

Fourier Transform Theorems^a

TABLE 4-2 Fourier Transform Pairs

Pair Number	x(t)	X(f)	Comments on Derivation
1.	$\Pi\left(\frac{t}{\tau}\right)$	$ au\sin au f$	Direct evaluation
2.	2W sinc 2Wt	$\Pi\left(\frac{f}{2W}\right)$	Duality with pair 1, Example 4-7
3.	$\Lambda\left(\frac{t}{\tau}\right)$	$ au\sin^2 au f$	Convolution using pair 1
4.	$\exp(-\alpha t)u(t), \alpha > 0$	$\frac{1}{\alpha + j2\pi f}$	Direct evaluation
5.	$t \exp(-\alpha t)u(t), \alpha > 0$	$\frac{1}{(\alpha + j2\pi f)^2}$	Differentiation of pair 4 with respect to α
6.	$\exp(-\alpha t), \alpha > 0$	$\frac{2\alpha}{\alpha^2 + (2\pi f)^2}$	Direct evaluation
7.	$e^{-\pi(t/\tau)^2}$	$\tau e^{-\pi (f \tau)^2}$	Direct evaluation
8.	$\delta(t)$	1	Example 4-9
9.	1	$\delta(f)$	Duality with pair 7
0.	$\delta(t-t_0)$	$\exp(-j2\pi ft_0)$	Shift and pair 7
1.	$\exp(j2\pi f_0 t)$	$\delta(f-f)$	Duality with pair 9
2.	$\cos 2\pi f_0 t$	$\frac{\frac{1}{2}\delta(f-f_0)}{\frac{1}{2j}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0)} \frac{1}{2j}\delta(f-f_0) - \frac{1}{2j}\delta(f+f_0) \right\}$	Exponential representation of cos and sin and pair 10
13.	$\sin 2\pi f_0 t$	$\frac{1}{2i}\delta(f-f_0) - \frac{1}{2i}\delta(f+f_0)$	cos and sin and pan 10
4.	u(t)	$(j2\pi f)^{-1} + \frac{1}{2}\delta(f)$	Integration and pair 7
5.	sgn t	$(j\pi f)^{-1}$	Pair 8 and pair 13 with superposition
6.	$\frac{1}{\pi t}$	$-j \operatorname{sgn}(f)$	Duality with pair 14
17.	$\hat{x}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(\lambda)}{t - \lambda} d\lambda$	$-j \operatorname{sgn}(f)X(f)$	Convolution and pair 15
18.	$\sum_{m=-\infty}^{\infty} \delta(t-mT_s)$	$f_s \sum_{m=-\infty}^{\infty} \delta(f - mf_s),$	Example 4-10
		$f_s = T_s^{-1}$	

Name	Operation in Time Domain	Operation in Frequency Domain
1. Linearity	$a_1 x_1(t) + a_2 x_2(t)$	$a_1 X_1(s) + a_2 X_2(s)$
2. Differentiation	$\frac{d^n x(t)}{dt^n}$	$s^n X(s) - s^{n-1} X(0^-) - \cdots - x^{(n-1)}(0^-)$
3. Integration	$\int_{-\infty}^{t} x(\lambda) d\lambda$	$\frac{X(s)}{s} + \frac{x^{(-1)}(0^-)}{s}$
4. s-shift	$x(t) \exp(-\alpha t)$	$X(s + \alpha)$
5. Delay	$x(t-t_0)u(t-t_0)$	$X(s) \exp(-st_0)$
6. Convolution	$x_1(t) * x_2(t) = \int_0^\infty x_1(\lambda) x_2(t-\lambda) d\lambda$	$X_1(s)X_2(s)$
7. Product	$x_1(t)x_2(t)$	$rac{1}{2\pi j}\int_{c-i\infty}^{c+j\infty}X_1(s-\lambda)X_2(\lambda)\;d\lambda$
8. Initial value (provided limits exist)	$\lim_{t\to 0^+} x(t)$	$\lim_{s \to \infty} sX(s)$
9. Final value (provided limits exist)	$\lim_{t\to\infty}x(t)$	$\lim_{s\to 0} sX(s)$
10. Time scaling	x(at), a > 0	$a^{-1}X\left(rac{s}{a} ight)$

TABLE 5-2	
Laplace Transform	Theorems

 TABLE 5-3

 Extended Table of Single-Sided Laplace Transforms

Signal	Laplace Transform	Comments on Derivation
1. $\delta^{(n)}(t)$	S^n	Direct evaluation with aid of (1-66)
2. 1 or <i>u</i> (<i>t</i>)	$\frac{1}{s}$	Direct evaluation
3. $\frac{t^n \exp(-\alpha t)u(t)}{n!}$	$\frac{1}{(s+\alpha)^{n+1}}$	Differentiation applied to pair 3, Table 5-1
4. $\cos \omega_0 t u(t)$	$\frac{s}{s^2 + \omega_0^2}$	Example 5-1
5. $\sin \omega_0 t u(t)$	$rac{\omega_0}{s^2 + \omega_0^2}$	Example 5-1
6. $\exp(-\alpha t) \cos \omega_0 t u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega_0^2}$	s-shift and pair 4
7. $\exp(-\alpha t) \sin \omega_0 t u(t)$	$\frac{\omega_0}{(s+\alpha)^2+\omega_0^2}$	s-shift and pair 5
8. Square wave: $u(t) - 2u\left(t - \frac{T_0}{2}\right) + 2u(t - T_0) - \cdots$	$\frac{1}{s} \frac{1 - e^{-sT_0/2}}{1 + e^{-sT_0/2}}$	Example 5-5
9. $(\sin \omega_0 t - \omega_0 t \cos \omega_0 t) u(t)$	$\frac{2\omega_0^3}{(s^2+\omega_0^2)^2}$	Example 5-12, pair 5, and convolution
$10. (\omega_0 t \sin \omega_0 t) u(t)$	$\frac{2\omega_0^2 s}{(s^2 + \omega_0^2)^2}$	Pair 4 and convolution
11. $\omega_0 t \exp(-\alpha t) \sin \omega_0 t u(t)$	$\frac{2\omega_0^2(s+\alpha)}{[(s+\alpha)^2+\omega_0^2]^2}$	s-shift and pair 10
12. $\exp(-\alpha t)(\sin \omega_0 t - \omega_0 t \cos \omega_0 t)u(t)$	$\frac{2\omega_0^3}{[(s+\alpha)^2+\omega_0^2]^2}$	s-shift and pair 9

Good Luck, Dr. Ali Muqaibel