King Fahd University of Petroleum & Minerals

Electrical Engineering Department EE207: Signals and Systems (043)

Final Exam

Tuesday, August 23, 2005 12:30 PM-03:00PM Building 14-108

	Serial #
	0
Name:	namananan mananan manan
ID:	KEY

Sec. (1) 9:20-10:20, Dr. Muqaibel (2) 10:30-11:30, Dr. Andalusi

Question	Mark
1	/10
2	/10
3	/10
4	/10
5	/10
Total	/50

Instructions:

- 1. This is a closed-books/notes exam.
- 2. Read the questions carefully. Plan which question to start with.
- 3. Write explicitly the formulas that you use in your solution (e.g. by KVL ... by KCL). No credit will be given if you do not show your formulas.
- 4. Work in your own.
- 5. CLEARLY LABEL ALL SIGNIFICANT VALUES ON BOTH AXIES OF ANY SKETCH
- 6. Strictly no mobile phones are allowed.

Good luck

Dr. Ali Muqaibel & Dr. Adnan Andalusi

Problem 1: (10 points)

Choose (Circle) the correct answer (or) answers:

(5 points)

z(t)

- **a.** If y(t) is a real function of time then the magnitude of its Fourier transform is (even, odd) function of frequency.
- **b.** The spectrum of a discrete time sampled signal is (Periodic in frequency) non-periodic in frequency).
- c. The shown signal can be represented by

- **e.** The signal z(t), shown in the previous figure, is (energy signal) power signal, neither energy nor power)
- **d.** A system which is represented by $y(t) = \cos(t) + x^2(t)$, where x(t) is the input signal and y(t) is the output signal is

(time varying) time invariant, linear, non-linear)

(5 points)

2. State whether the following statements are True or False: (fill the table below with T or F) +1 for any correct answer, and -0.5 for any wrong answer. Maximum=5, Minimum=0

$$\mathbf{a.} \ \int\limits_{-\infty}^{\infty} u(t)dt = r(t).$$

- **b.** The ramp response of a causal system is zero for t < 0.
- **c.** The z-transform of the sequence $x[(n-1)T_s]$ is $z^{-1}X(z)$, where X(z) is the z-transform of $x[n T_s]$.
- **d.** The convolution of two signals x(t) and y(t) in the time domain is equivalent to convolving X(t)and Y(f) in the frequency domain.
- e. The bandwidth of a pulse is inversely proportional to its time duration.

Q	a	b	c	d	e
T or F	F	T	T	F.	T

Problem 2: (10 points)

Consider the following periodic signal f(t):

- ሷ ዮኬ a) What is the period and fundamental frequency of this signal?
- 3 ov: b) Show that the Fourier series of this signal is given by: $f(t) = 1/2 + (2/\pi) * [\cos(\pi t) - 1/3 \cos(3\pi t) + 1/5 \cos(5\pi t) - 1/7 \cos(7\pi t) + \dots]$
- 3 pV3 c) Give the exponential form of this Fourier series.
- Give a simple plot of the double-sided line spectra of this signal (both magnitude and phase), and specify which one is even or odd.

$$\frac{2}{2} 2 \int_{0}^{1/2} 1 \cdot \cos n\pi t \, dt = \frac{2}{n\pi} \sin n\pi t \, \left| \frac{1/2}{n} = \frac{2}{n\pi} \sin \left(\frac{n\pi}{2} \right) \right|$$

$$\Rightarrow \text{ for } n \text{ every }, \quad a_n = 0 \quad (\text{ sin } n^{\text{off}} = 0)$$

$$\Rightarrow \text{ for } n \text{ odd }, \quad a_n = \pm \frac{9}{100} \quad (\text{ sin } n^{\text{off}} = \pm 1)$$

$$G_{n} = \frac{2}{hT}, h = 1, 5, 9, 13, \dots$$

$$= \frac{2}{hT}, h = 3, 7, 11, 15, \dots$$

$$F_{c} = \frac{1}{2}(a_{h} - jb_{h}) = \frac{1}{2}(a_{h} - jb_{h})$$

$$F_{h} = \frac{1}{2}(a_{h} + jb_{h})$$

Problem 3: (10 points)

Consider the following signal which is sampled using ideal impulse train at a rate of 10 samples/second.

$$x(t) = 1 + 4\cos(4\pi t)$$

<u>(1 point)</u> a) Calculate the power of x(t).

(1 point) b) For the first 4 samples fill in the following table:

	Sampling Time	Sampled Value
n	nT_s	$x(nT_s)$
0	0	5
1	0.1	2.236
2	0,2	-2.236
3	0,3	2.236

(3 points) c) Find and sketch the magnitude of X(t), which represents the magnitude spectrum of x(t).

$$X(f) = Sf + 2 S(f-2) + 2 S(f+2)$$

(3 points) d) Find and sketch $|X_s(t)|$, which represents the magnitude spectrum of the sampled signal $x_s(t)$, Your sketch should show the range of frequencies -25 < f < 25 Hz.

2 if no sente

(1 point)

Use a low pars filter (ideal) with band width (cut off) >2 Hz 2 < 8 Hz f) What is the minimum required sampling frequency to avoid aliasing?

(1 point)

Sampling frequency should be > 2th = 4 Hz

Problem 4: (10 points)

Consider the following circuit:

- Write the equivalent Laplace transform model for this circuit. You can assume that the initial conditions are all zero ($v_c(0)=0$ and $i_b(0)=0$).
- 2) Assume the output Y(s) is the voltage $V_R(s)$. Find the transfer function Y(s)/X(s).
- 3) Assume that C=1F, L=1H, R=2 Ω , and the input is a step: x(t) = u(t). Find the output function y(t).
- Suppose now that C=0.125F, L=1H, R=6 Ω , and the input is x(t)=exp(-t).u(t). Find the output function y(t).

output function y(t). $y_{g} \neq y_{g}$ Note: the following relationships are useful:

LT[exp(-\alphat).u(t)]= 1/(s+\alpha) and LT[exp(-\alphat)sin(\omega_0t).u(t)]=\omega_0/[(s+\alpha)^2+\omega_0^2].

2)
$$Y(s) = R.I(s) = \frac{R \times (s)}{sL + \frac{1}{sc} + R} = \frac{RC.s \times (s)}{LC.s^2 + RC.s + 1}$$

$$H(s) = \frac{Y(s)}{X(s)} = \frac{RC.s}{LC.s^2 + RC.s + 1}$$

3)
$$x(H = u(H) \rightarrow x(s) = \frac{1}{s} \text{ and } y(s) = \frac{2}{(s+1)^2}$$

$$y(t) = 2te^{-t}u(t).$$

4)
$$\chi(s) = \frac{1}{s+1}$$
 and $\gamma(s) = \frac{6s}{(s+1)(s^2+6s+8)} = \frac{6.5}{(s+1)(s+2)(s+4)}$

part. frac. exp.
$$\rightarrow \gamma(s) = \frac{-2}{s+1} + \frac{6}{s+2} - \frac{4}{s+4}$$
.

and $\gamma(t) = (-2e^{-t} + 6e^{-2t} - 4e^{-4t}) \cdot u(t)$

Problem 5: (10 points)

A. Find the Fourier transform of the following signals (Tables are attached, If needed)

Hint: you may use successive differentiation

(4 points)

Using the differentiation property

$$\frac{d^2}{dt^2} \chi(t) \Leftrightarrow (j_2\pi f)^2 \chi(f)$$

$$\frac{d^{2}}{dt^{2}} \chi(t) \rightleftharpoons (32\pi f)^{2}$$

$$Y(f) = \frac{1}{(2\pi f)^{2}} \left[1 - e^{-2} e^{-\frac{1}{2}} + 2e^{-\frac{1}{2}} \right]$$

$$a(t) = 2e^{-4t}u(t+1)$$

c. Find the impulse response,
$$h(t)$$
? (1 **point**)

Starts before the input ult)

2. Find the impulse response,
$$h(t)$$
?

(1 point) derivative of product

$$h(t) = \frac{d}{dt} \frac{a(t)}{dt} = -8 e^{-4t} t > -1$$

$$= \begin{cases} -8 e^{-4t} & t > -1 \\ 0 & t < -1 \end{cases}$$

What is the output if the input is $x(t) = \delta(t-2) + 3u(t+4)$. (1 point)

d. What is the output if the input is
$$x(t) = \delta(t-2) + 3u(t+4)$$
 (1 point)

Because the system is linear super position applies
$$y(t) = h(t-2) + 3 q(t+4) = -8 e \quad u(t+1) + 2e \quad s(t-1)$$

$$+ 6 e^{4}(t+4) u(t+5)$$

e. If the input is now given by
$$x(t) = \prod \left(\frac{t-1}{4}\right)$$
, what would be the output of the system. (2 points)

$$y(t) = a(t+1) - a(t-3)$$

$$-4(t+1)$$

$$2 \in 4(t+2) - 2 \in 4(t-2)$$