King Fahd University

of Petroleum \& Minerals

Department of Electrical Engineering

EE 207 Signals and Systems
First Semester (111)
Exam II
Saturday, 3 December 2011
7:00 pm - 8:30 pm

Name: \qquad
ID: \qquad

Instructors:

Dr. Khurram Qureshi
Dr. Husain Al-Jamed
Dr. Ali Muqaibel
Dr. Wajih Abu-Al-Saud
(Sections 1 \& 5)
(Section 2)
(Section 3)
(Section 4)

Problem	Score	Out of
1		35
2		20
3		15
4		30
Total		100

Good luck!

Problem 1：

a）In each case of the following，circle ALL words between parentheses that describe the statement：
i）Ideal lowpass filters cannot be implemented because they are non－causal．（True）（False）
ii）The Fourier transform does not exist for some signals．（True）（False）
iii）The signals 1 and $u(t)$ have different single－sided Laplace transforms．（True）（False）
iv）If $x(t)$ is real and even function of time，then $X(f)$ is：
（Real）（Imaginary）（Complex）（Odd）（Even）
v）The spectrum of a non－period signal is（discrete）（continuous）
b）Using the tables of Fourier transform，find the Fourier transform of the signals
i）$x(t)=\operatorname{sinc}(4 t)+\Pi\left(\frac{t-3}{6}\right)$
From Table 4－2．1 and 4－2．2

$$
\begin{aligned}
& \Pi\left(\frac{t}{6}\right) \text { 日獡 } 6 \cdot \operatorname{sinc}(6 f)
\end{aligned}
$$

Using the Time Delay（Table 4－1．2）on the second relation gives

$$
\Pi\left(\frac{t-3}{6}\right) \text { 日歐 } 6 \cdot \operatorname{sinc}(6 f) e^{-j 2 \pi f(3)}
$$

Using Superposition（Table 4－1．1）to combine the two terms

$$
\operatorname{sinc}(4 t)+\Pi\left(\frac{t-3}{6}\right) \text { 日期 } \frac{1}{4} \Pi\left(\frac{f}{4}\right)+6 \cdot \operatorname{sinc}(6 f) e^{-j 2 \pi f(3)}
$$

ii）$\quad x(t)=2 \cdot \operatorname{sinc}\left(\frac{t}{3}\right) \delta(t)$

Method 1：

From Table 4－2．2 and 4－2．8

$$
\begin{aligned}
& \operatorname{sinc}\left(\frac{t}{3}\right) \text { 日解田 } 3 \cdot \Pi(3 f)
\end{aligned}
$$

Using the Multiplication（Table 4－1．9）gives

Let us evaluate the convolution：

$$
3 \cdot \Pi(3 f) * 2=6 \underbrace{\int_{-\infty}^{\infty} \Pi(3 \lambda) \cdot 1 d \lambda}_{\frac{1}{3}}=6 \cdot \frac{1}{3}=2
$$

So，

$$
2 \cdot \operatorname{sinc}\left(\frac{t}{3}\right) \delta(t) \text { 日解 } 2
$$

Method 2：

We note that

$$
\begin{aligned}
x(t) & =2 \cdot \operatorname{sinc}\left(\frac{t}{3}\right) \delta(t)=2 \cdot \operatorname{sinc}\left(\frac{0}{3}\right) \delta(t) \\
& =2 \delta(t)
\end{aligned}
$$

So，

$$
2 \cdot \operatorname{sinc}\left(\frac{t}{3}\right) \delta(t) \text { 日䀞 } 2
$$

iii）$x(t)=\frac{\cos (2 \pi 5 t)}{3+j 2 \pi t}$
From Table 4－2．4

$$
e^{-3 t} u(t) \text { 日淠 } \frac{1}{3+j 2 \pi f}
$$

Applying Duality（Table 4－1．4）on the above gives

$$
\frac{1}{3+j 2 \pi t} \text { 日抽解 } e^{3 f} u(-f)
$$

Using Modulation（Table 4－1．5b）on the above gives

$$
\frac{\cos (2 \pi 5 t)}{3+j 2 \pi t} \text { 日慪 } \frac{1}{2} e^{3(f-5)} u(-(f-5))+\frac{1}{2} e^{3(f+5)} u(-(f+5))
$$

c）Using the tables of Fourier transform，find the inverse Fourier transform of the signal

$$
X(f)=\frac{4}{5+j 2 \pi(f+50)}+\frac{4}{5+j 2 \pi(f-50)}
$$

We note that the two terms are similar to each other with the difference that one of them is shifted by +50 while the other is shifted by -50 ．

From Table 4－2．4

$$
4 e^{-5 t} u(t) \text { 日㔚画 } \frac{4}{5+j 2 \pi f}
$$

Using Modulation（Table 4－1．5b）on the above gives

$$
8 e^{-5 t} \cdot \cos (2 \pi 50 t) \cdot u(t) \text { 卧 } \frac{4}{5+j 2 \pi(f+50)}+\frac{4}{5+j 2 \pi(f-50)}
$$

So，

$$
x(t)=8 e^{-5 t} \cdot \cos (2 \pi 50 t) \cdot u(t)
$$

Problem 2:

A periodic signal $x(t)$ with period $T_{0}=0.5 \mathrm{~s}$ has complex exponential Fourier series coefficients

$$
X_{n}= \begin{cases}-3, & n=0 \\ \frac{3}{n^{2}+1}+j \frac{2}{n}, & n \neq 0\end{cases}
$$

a) Sketch the double-sided magnitude spectrum of $x(t)$ over the range -5 Hz to 5 Hz showing all important value on the x - and y -axis.

b) Sketch the double-sided phase spectrum of $x(t)$ over the range -5 Hz to 5 Hz .

c) Find the average power of $x(t)$ contained in the frequency range -5 Hz to 5 Hz .

Over the range -5 Hz to 5 Hz , the average power is

$$
\begin{aligned}
P_{\text {Avg }} & =(3)^{2}+2(2.5)^{2}+2(1.166)^{2} \\
& =9+2(6.25)+2(1.3596) \\
& =24.2191 \mathrm{~W}
\end{aligned}
$$

Problem 3:

For the system represented by the circuit shown to the right, where $x(t)$ is the input and $y(t)$ is the output. Find:

a) Converting the circuit to Frequency Domain gives

The frequency response $H(f)$ of the system is

$$
\begin{aligned}
& H(f)=\frac{\frac{1}{j 2 \pi f 4}}{\frac{1}{j 2 \pi f 4}+3+\frac{1}{j 2 \pi f 2}} \\
&=\frac{1}{\frac{j 2 \pi f 4}{j 2 \pi f 4}+3 j 2 \pi f 4+\frac{j 2 \pi f 4}{j 2 \pi f 2}} \\
&=\frac{1}{1+3 j 2 \pi f 4+2} \\
& H(f)=\frac{1}{3+j 2 \pi f 12}
\end{aligned}
$$

$$
X(f)
$$

b) The frequency response $H(f)$ can be reformatted by dividing numerator and denominator by 12 to give:

$$
H(f)=\frac{\frac{1}{12}}{\frac{1}{4}+j 2 \pi f}
$$

So,

$$
h(t)=\frac{1}{12} e^{-\frac{1}{4} t} u(t)
$$

Problem 4：

a）Using the tables of Laplace transform，find the Laplace transform of the signal

$$
x(t)=\delta(t-10)+e^{-2 t} u(t)
$$

From Table 5－3．1 and 5－3．3

$$
\begin{aligned}
& \delta(t) \text { 日䣈 } 1 \\
& e^{-2 t} u(t) \text { 日碃 } \frac{1}{s+2}
\end{aligned}
$$

Note that $\delta(t-10)=\delta(t-10) \cdot u(t-10)$
Using the Time Delay（Table 5－2．5）on the first relation gives

$$
\delta(t-10) \text { 日唃 } e^{-10 s}
$$

Using Linearity（Table 5－2．1）to combine the two terms

$$
\begin{aligned}
& \delta(t-10)+e^{-2 t} u(t) \text { 日解 } e^{-10 s}+\frac{1}{s+2} \\
& X(s)=e^{-10 s}+\frac{1}{s+2}
\end{aligned}
$$

b）Using the tables of the Laplace transform，find the signal $x(t)$ whose single－sided Laplace transform is

$$
X(s)=\frac{1}{s}+\frac{e^{-2 s}}{s+5}
$$

From Table 5－3．1 and 5－3．3

$$
\begin{aligned}
& u(t) \text { 日䣈 } \frac{1}{s} \\
& e^{-5 t} u(t) \text { 日甜 } \frac{1}{s+5}
\end{aligned}
$$

Using the Time Delay（Table 5－2．5）on the second relation gives

$$
e^{-5(t-2)} u(t-2) \text { 日啫 } \frac{e^{-2 s}}{s+5}
$$

Using Linearity（Table 5－2．1）to combine the two terms

$$
u(t)+e^{-5(t-2)} u(t-2) \text { 日顿 } \frac{1}{s}+\frac{e^{-2 s}}{s+5}
$$

So，

$$
x(t)=u(t)+e^{-5(t-2)} u(t-2)
$$

c) Find the initial and final values (assuming they exist) of the signal $x(t)$ with the Laplace transform given below.

$$
X(s)=\frac{2 s+5}{s^{2}+3 s}
$$

Initial Value

$$
\begin{aligned}
x\left(0^{+}\right) & =\lim _{s \rightarrow \infty}\left((s) \frac{2 s+5}{s^{2}+3 s}\right) \\
& =\lim _{s \rightarrow \infty}\left(\frac{2 s^{2}+5 \not \phi^{2}}{s^{2}+3 \not{ }^{2}}\right)=2
\end{aligned}
$$

Final Value

$$
\begin{aligned}
x(\infty) & =\lim _{s \rightarrow 0}\left((s) \frac{2 s+5}{s^{2}+3 s}\right) \\
& =\lim _{s \rightarrow 0}\left(\frac{2 s^{2}+5 s}{s^{2}+3 s}\right)=\frac{5}{3}
\end{aligned}
$$

d) A signal $x(t)$ has the Laplace transform $X(s)=\frac{s}{s^{2}+2}$. Find the Laplace transform $Y(s)$ of the signal

$$
y(t)=2 x\left(\frac{t}{4}\right)+3 x(5 t)+x(t) * x(t)
$$

without finding $x(t)$.

Apply the Laplace transform of both sides of the above equation

$$
\begin{aligned}
Y(s) & =8 \cdot X(4 s)+\frac{3}{5} \cdot X\left(\frac{s}{5}\right)+X(s) \cdot X(s) \\
& =8 \cdot \frac{4 s}{16 s^{2}+2}+\frac{3}{5} \cdot \frac{\frac{s}{5}}{\frac{s^{2}}{25}+2}+\left(\frac{s}{s^{2}+2}\right)^{2}
\end{aligned}
$$

