King Fahd University of Petroleum & Minerals

Electrical Engineering Department EE207: Signals & Systems (121)

Major Exam I

Oct. 10, 2012 6:00-7:30 PM Building 59

Name: _____

ID#_____

Question	Mark
1	
2	
3	
Total	

Instructions:

- 1. This is a closed-books/notes exam.
- 2. The duration of this exam is one and half hours.
- 3. Read the questions carefully. Plan which question to start with.
- 4. <u>CLEARLY LABEL ALL SIGNIFICANT VALUES ON BOTH AXIES OF ANY</u> <u>SKETCH</u>
- 5. Work in your own.
- 6. <u>Strictly no mobile phones are allowed</u>. Do not even look at them !

Good luck

Mark	sec	Timing	Instructor						
	1	<u>UT 8:30</u>	Dr. M. Landolsi						
	3	<u>UT 10:00</u>	Dr. Ali Al-Shaikhi						
	4	<u>SMW 10:00</u>	Dr. Azzedine Zerguine						
	5	<u>SMW 11:00</u>	Dr. Ali Muqaibel						

Pro	ble	m	1:	Choose	the	best	answer.	Fill i	in th	ne table	with	CLEAR	answer

Question	1	2	3	4	5	6	7	8	9	10	11	12	13
Answer													

1. The two shown signals y(t) and x(t) are related by:

- a) y(t) = -0.5x(2t+1) + 1.5
- b) y(t) = 2x(-t) 1.5
- c) y(t) = -2x(2t) + 1.5
- d) y(t) = -2x(0.5t + 1) + 1.5
- e) y(t) = -0.5x(2(t-2)) + 1.5
- 2. The value of $\int_{-\infty}^{+\infty} \left[e^{\alpha t^2} \delta(t-10) + \sin(3\pi t) \, \delta(t) \right] dt =$ a) 0
 - b) $e^{100^{\circ}}$
 - c) 1
 - d) $e^{100\alpha} + 1$

e)
$$e^{\alpha t^2} + \sin(3\pi t)$$

- **3.** For the periodic sawtooth signal shown in the figure, the power is equal to
 - a) 2
 - b) 1
 - c) ½
 - d) 1/3
 - e) 0

4. A system is described by the following impulse response $h(t) = u(t + 1) + \delta(t)$, the system is

- a) Causal, Bounded Input Bounded Output (BIBO) stable, has memory (dynamic)
- b) Noncausal, Bounded Input Bounded Output (BIBO) stable, memoryless (static)
- c) Noncausal, not Bounded Input Bounded Output (BIBO) stable, has memory (dynamic)
- d) Causal, not Bounded Input Bounded Output (BIBO) stable, memoryless (static)
- e) Causal, not Bounded Input Bounded Output (BIBO) stable, has memory (dynamic)
- 5. A causal linear Time-invariant system has the impulse response, $h(t) = \frac{1}{3} e^{-\frac{t}{3}} u(t)$. If the input signal is 2u(t-5), then the output is

a)
$$2\left(1-e^{\frac{-(t-5)}{3}}\right)u(t-5)$$

b) $\frac{2}{9}\left(1-e^{\frac{-(t-5)}{3}}\right)u(t-5)$

- c) $\frac{2}{3}e^{-\frac{(t-5)}{3}}u(t-5)$
- d) $\frac{1}{3}e^{-\frac{t}{3}}u(t)$. 2u(t-5)
- e) This input cannot be applied because the system is causal

6. Which of the following statements is true?

- a) For a linear time invariant system, the step response, s(t), is related to the impulse response, h(t), by $s(t) = \int_{0}^{\infty} h(t)dt$.
- b) Even functions are symmetric about the *x*-axis.
- c) The following system $y(t) = 5 + x(t) + x(t^2)$ is memoryless
- d) In the complex exponential Fourier representation, the complex coefficient C_0 is always real number.
- e) $\delta(t)\cos(2\pi t) = 1$
- 7. A system made of four subsystems connected as shown in the Figure. Every system is expressed with its impulse response. The overall impulse response is given by:

5
$$e^{-4t^2} \cos(t^2)\delta(t-10)dt =$$

8. The value of
a) $e^{-400} \cos(100)\delta(t-10)$
b) $e^{-400} \cos(100)$
c) $\delta(t-10)$
d) $e^{-400} \sin(100)$
e) 0

9. The system defined by the input output relationshipis a causal system.

a)
$$y(t) = x(-t)$$

b) $y(t) = x(t^2)$
c) $y(t) = x(t^{\frac{1}{2}})$
d) $y(t) = x(t) + t - 1$
e) $y(t) = x(t + 5) - 5$

10 The signal shown can be represented by:

a)
$$-u(t)+u(t-3)$$

b) $-2u(t)\times u(-t+3)$
c) $-3u(t)\times u(-t-2)$
d) $-3u(-t)\times rect(-t-2)$
e) $-z(t)$

- 11. Let $s(t) = e^{t-1}u(t+1)$ be the step response of a linear time invariant system. The unit impulse response, h(t), for this system is:
 - a) $h(t) = e^{t-1}u(t+1)$ b) $h(t) = e^{t-1}u(t+1) + e^{-2}\delta(t+1)$ c) $h(t) = e^{t-1}\delta(t+1)$ d) $h(t) = e^{t-1}u(t+1) + \delta(t+1)$ e) h(t) cannot be found from s(t)

12. Evaluate
$$\cos\left(\frac{\pi t}{5}\right) * \delta(t) * \delta(t-3) =$$

a) $\cos\left(\frac{\pi t}{5}\right)$
b) $\cos\left(\frac{\pi}{5}\right)$
c) $\cos\left[\frac{\pi}{5}(t-3)\right]$
d) $\delta(t)$
e) $\cos\left(\frac{3\pi}{5}\right)$

- 13. Given that $x(t) = 6e^{-6t}u(t)$, the energy of x(t) is:
 - a) 0.5b) 1.0c) 3.0
 - d) 6.0
 - u) 0.0
 - e) 4.0

Problem 2:

Part 1: Consider the signal x(t) shown in the following figure.

- a) Find the period T_0 and the fundamental frequency ω_0 for the signal x(t).
- b) Compute the complex Fourier coefficients C_k .
- c) Find the trigonometric Fourier series coefficients A_0 , A_1 , and B_3 .

$$T_0 = \omega_0 =$$

Problem 2:

Part 2: For a signal with complex Fourier series coefficients: $C_0 = 0$ and $C_k = \frac{-3j}{k\pi} \left[cos\left(\frac{k\pi}{2}\right) - 1 \right], k > 0.$ a) Plot the <u>two-sided</u> magnitude spectrum (up to the 4th harmonic). b) Plot the <u>two-sided</u> phase spectrum (up to the 4th harmonic).

Problem 3:

Part 1. Find y(t) = x(t) * h(t) for the two signals shown below:

Part 2. Find y(t) = x(t) * h(t) for the two signals shown below:

