Two balanced three-phase Δ-connected loads are connected in parallel. Load 1 has an impedance per phase of $750+j 240 \Omega / \varnothing$; and load 2 is $112.32+j 95.04 \mathrm{kVA}$ (hint: load 2 is represented by its 3 -phase complex power) . The loads are fed from a distribution line with an impedance of $\boldsymbol{R}+j 5 \Omega / \emptyset$. The magnitude of the phase voltage at the load end of the line is 7.2 kV . The a-phase voltage at the load is specified as the reference phasor. Assume positive sequence. The total complex power at the sending end of the line is $683419+j 292716 \mathrm{VA}$ Find the value of \boldsymbol{R} ?
\qquad

