King Fahd University of Petroleum & Minerals	Serial #
Electrical Engineering Department	
EE205: Electric Circuit II (082)	- 1 points for not writing your serial number
Quiz 2 (Take Home): Balanced 3 Phase Systems 11.4-11.6	
Name: Sec.	

Two balanced three-phase Δ -connected loads are connected in parallel. Load 1 has an impedance per phase of 750+*j* 240 Ω/\emptyset ; and load 2 is 112.32+*j* 95.04 kVA (*hint: load 2 is represented by its 3-phase complex power*). The loads are fed from a distribution line with an impedance of \mathbf{R} + *j* 5 Ω/\emptyset . The magnitude of the phase voltage at the load end of the line is 7.2kV. The a-phase voltage at the load is specified as the reference phasor. Assume positive sequence. The total complex power at the sending end of the line is 683419+*j* 292716 VA Find the value of \mathbf{R} ?

I have not given nor received any help in solving this quiz