King Fahd University of Petroleum & Minerals

Electrical Engineering Department

EE205: Electric Circuit II (082) Quiz 1: Balanced Three Phase Y-Connected Systems - 1 points for not writing your serial number

0

Serial #

KEY Name:

Ver. 2

The magnitude of the line voltage at the terminals of a balanced Y-connected load is 12,800 V. The load impedance is $216+j63 \Omega/\emptyset$. The load is fed from a line that has an impedance of $0.25+j2 \Omega/\emptyset$. Assume the sequence is positive.

- a) If V_{AB} is the reference voltage, what is V_{BC} and V_{CA} $V_{AB} = 12,800 V | 0 = V_{BC} = 12,800 | -120 V$ $V_{CA} = 12,800 | +120 V$
- b) Find V_{AN}

$$\sqrt{\frac{1}{48}} = \sqrt{3} \sqrt{\frac{13}{40}} = \sqrt{\frac{12.800}{13}} = \frac{12.800}{\sqrt{3}} = \frac{12.800}{\sqrt$$

c) What is the magnitude of the line current?

$$I_{aA} = \left| \frac{V_{AN}}{216 + j63} \right| = \left| \frac{12800 \left[-3^{\circ} \right]}{(\sqrt{3})(216 + j63)} \right| = \frac{12800 \left[-3^{\circ} \right]}{\sqrt{3}}$$

$$\int \left| I_{aA} \right| = 32.845 A$$

d) What is the magnitude of the line voltage at the source?

$$|V_{ay}| = |I_{aA}|(32 + 0.25 + 216 + 363)|$$
 @
$$= |I_{aA}|(216.25 + 365)| = 7416.61 \text{ V}$$

$$|V_{ab}| = |\sqrt{3} V_{an}|^{\frac{35}{20}}| = \sqrt{3} |V_{an}|$$
 O $|V_{ab}| = |12, 845.94 |V|$