Summary for CH#8 Natural and Step Responses of RLC Circuits

• The characteristic equation of the following RLC circuits,

$$s^2 + 2\alpha s + \omega_0^2 = 0$$

where,

$$\boxed{\alpha = \frac{1}{2RC} (parallel)}$$

$$\boxed{\alpha = \frac{R}{2L} \text{ (series)}}$$

$$\omega_o = \frac{1}{\sqrt{LC}}$$
 (for parallel & series)

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_o^2}$$

• Depending on the values of $\alpha^2 \& \omega_o^2$ the natural and step response of the series & parallel RLC circuits can be classified as follow:

Туре	Roots $(S_{1,2})$	Condition
Overdamped	Real, distinct	$\alpha^2 > \omega_o^2$
Underdamped	Complex	$\alpha^2 < \omega_o^2$
Critically damped	Real, repeated	$\alpha^2 = \omega_o^2$

• For natural response:

Туре	Equations	Initial Conditions
Overdamped	$x(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$	$x(0) = A_1 + A_2;$
		$\frac{dx}{dt}(0) = \frac{i_c(0)}{C} = A_1 s_1 + A_2 s_2$
Underdamped	$x(t) = (B_1 \cos \omega_d t + B_2 \sin \omega_d t)e^{-\alpha t}$	$x\left(0\right) =B_{1};$
		$\frac{dx}{dt}(0) = \frac{i_c(0)}{C} = -\alpha B_1 + \omega_d B_2,$
		where : $\omega_d = \sqrt{{\omega_0}^2 - \alpha^2}$ (Warning!!)
Critically damped	$x(t) = (D_1 t + D_2)e^{-\alpha t}$	$x\left(0\right) = D_{2}$
		$\frac{dx}{dt}(0) = \frac{i_c(0)}{C} = D_1 - \alpha D_2$

• **For step response**: (See examples 8.6-8.10)

Туре	Equations	Initial Conditions
Overdamped	$x(t) = X_f + A'_1 e^{s_1 t} + A'_2 e^{s_2 t}$	$x(0) = X_f + A'_1 + A'_2;$
		$\frac{dx}{dt}(0) = \frac{i_c(0)}{C} = A'_1 s_1 + A'_2 s_2$
Underdamped	$x(t) = X_f + (B'_l \cos \omega_d t + B'_2 \sin \omega_d t$	$x(0) = X_f + B'_1;$
		$\frac{dx}{dt}(0) = \frac{i_c(0)}{C} = -\alpha B'_1 + \omega_d B'_2,$
Critically damped	$x(t) = X_f + (D'_1t + D'_2)e^{-\alpha t}$	$x(0) = X_f + D'_2$
	*	$\frac{dx}{dt}(0) = \frac{i_c(0)}{C} = D'_1 - \alpha D'_2$

Two Integrator Amplifier: (see example 8.13)

Applying KCL at the inverting terminals result in the following:

$$\frac{dv_o}{dt} = -\frac{1}{R_1 C_1} v_g$$

$$\boxed{\frac{dv_o}{dt} = -\frac{1}{R_2C_2}v_{o1}} \overset{Differentiating}{\Leftrightarrow} \boxed{\frac{d^2v_o}{dt^2} = -\frac{1}{R_2C_2}\frac{dv_{o1}}{dt}} = 2$$

From 1 & 2:

$$\frac{d^2 v_o}{dt^2} = \frac{1}{R_1 C_1} \frac{1}{R_2 C_2} v_g$$

• Two Integrating Amplifiers with Feedback Resistors:

The reason for adding the feedback resistors is the fact that the op amp in the integrating amplifier saturates because of the feedback capacitor's accumulation of charge. A resistor is placed in parallel with each feedback capacitor (C1 and C2) to overcome this problem.

$$\frac{d^{2}v_{o}}{dt^{2}} + \left(\frac{1}{\tau_{1}} + \frac{1}{\tau_{2}}\right) \frac{dv_{o}}{dt} + \left(\frac{1}{\tau_{1}\tau_{2}}\right)v_{o} = \frac{v_{g}}{R_{a}C_{1}R_{b}C_{2}}$$

The characteristic equation:

$$s^{2} + \left(\frac{1}{\tau_{1}} + \frac{1}{\tau_{2}}\right)s + \frac{1}{\tau_{1}\tau_{2}} = 0$$

The roots:

$$s_1 = -\frac{1}{\tau_1}; s_2 = -\frac{1}{\tau_2}$$

Example 8.14 illustrates the analysis of the step response of two cascaded integrating amplifiers when the feedback capacitors are shunted with feedback resistors.