KFUPM-Electrical Engineering Department

EE205: Electric Circuits II

Dr. Ali Muqaibel

Summary of (corrected ver. 2.0)
Mutual Inductance \& Transformers

- The inductance, L, is the parameter that relates a voltage of a time-varying current in the same circuit; thus L is more precisely referred to as "self-inductance".
- However, in the situation where two circuits are linked by a magnetic field, the voltage induced in the second circuit can be related to the time-varying current in the first circuit by a parameter known as "mutual-inductance", M.

Two magnetically coupled coils

- For the circuit above, the self-induced voltage across the coil on the left equals to: $L_{1}\left(\frac{d i_{1}}{d t}\right)$, and the mutually induced voltage across the same coil is $M\left(\frac{d i_{2}}{d t}\right)$.
- Sign convention for the self-induced voltage: the self-induced voltage is a voltage drop in the direction of the current producing the voltage. "Passive sign convention"
- Sign convention for the "mutually induced voltage: the polarity of this voltage is assigned by method known as the "Dot Convention" which states that:
(When the reference direction for a current enters the dotted terminal of a coil; the reference polarity of the voltage that it induces in the other coil is positive at its dotted terminal)

$$
V=L_{1}\left(\frac{d i_{1}}{d t}\right)+M\left(\frac{d i_{2}}{d t}\right) \quad \text { (for the shown circuit). }
$$

- The Coefficient of Coupling (k) is a measure of the degree of magnetic coupling. By definition, $0 \leq k \leq 1$.
- The relationship between the self-inductance of each winding and the mutual inductance between windings is $M=k \sqrt{L_{1} L_{2}}$.
- The dot marking can be done using the right hand rule (if we have access to the coils) or experimentally using a test voltage source.
- The energy stored in magnetically coupled coils is related to the coils currents and inductances by the relationship: $W=\frac{1}{2} L_{1} i_{1}{ }^{2}+\frac{1}{2} L_{2} i_{2}{ }^{2} \pm M i_{1} i_{2}$, with + if the two currents are the same relative to the dots (both enter or both leave the coils at the dotted terminals)
- Some physical relations are important when understanding the physics of inductance:
$v=\frac{d \lambda}{d t}, \lambda=N_{v} \Phi, \Phi=\rho N_{i} i, L=\rho N^{2}$, for nonmagnetic (linear) materials $M_{12}=M_{21}=M$ $M_{21}=N_{2} N_{1} \rho_{21}, M_{12}=N_{1} N_{2} \rho_{12}$,

The frequency domain circuit model for a transformer used to connect a load to a source

- \quad The impedance seen by the internal voltage source V_{S} is:

$$
Z_{\mathrm{int}}=\frac{V_{S}}{I_{1}}=\frac{Z_{11} Z_{22}+\omega^{2} M^{2}}{Z_{22}}=Z_{11}+\frac{\omega^{2} M^{2}}{Z_{22}}
$$

Where: Z_{11}, the total "self impedance" of the mesh containing the primary winding (Left here) of the transformer.
Z_{22}, the total "self impedance" of the mesh containing the secondary winding (Right here) of the transformer.

- The impedance at the terminals of the source is $Z_{\text {int }}-Z_{S}$:

$$
Z_{a b}=Z_{11}+\frac{\omega^{2} M^{2}}{Z_{22}}-Z_{s}=R_{1}+j \omega L_{1}+\frac{\omega^{2} M^{2}}{\left(R_{2}+j \omega L_{2}+Z_{L}\right)}
$$

- The term $\frac{\omega^{2} M^{2}}{\left(R_{2}+j \omega L_{2}+Z_{L}\right)}$ is called the "Reflected Impedance", which is equal to the second coil impedance and the load impedance reflected to the primary side of the transformer. It is also can be written as: $Z_{r}=\frac{\omega^{2} M^{2}}{\left|Z_{22}\right|^{2}} Z_{22}{ }^{*}=\frac{\omega^{2} M^{2}}{Z_{22} Z_{22}{ }^{*}} Z_{22}{ }^{*}=\frac{\omega^{2} M^{2}}{Z_{22}}$
- For an ideal transformer :

$$
\left|\frac{V_{1}}{N_{1}}\right|=\left|\frac{V_{2}}{N_{2}}\right| \quad\left|I_{1} N_{1}\right|=\left|I_{2} N_{2}\right|
$$

The polarity is determined as follows:
1- If the coil voltages V_{1} and V_{2} are both positive or negative at the dot-marked terminal, use plus sign in the first equation, otherwise use a negative sign.
2- If the coil current i_{1} and i_{2} are both directed into or out of the dot-marked terminal, use a minus sign in the second equation, otherwise use a plus sign.

- $\quad a=\mathrm{N}_{2} / \mathrm{N}_{1}$ (Turns ratio)
- Ideal transformers can be used for Impedance Matching:
$Z_{\text {in }}=\frac{1}{a^{2}} Z_{L}$
This is not a comprehensive summary. It is meant to help you summarize the main ideas. Please send me an e-mail if you find any mistake.
This summary was made with the help of Mr. Adel Al-Ghamdi
Regards, Dr. Muqaibel

