KFUPM-EE DEPT. EE570- Stochastic Processes
 Dr. Ali Muqaibel

Random Processes

Version 2.0 revised

Note: for this specific assignment a group of two students can work together and submit one solution.

1. Sample functions in a discrete random process are constants; that is

$$
X(t)=C=\text { constant }
$$

where C is a discrete random variable having possible values $c_{1}=1, c_{2}=$ 2 , and $c_{3}=3$ occurring with probabilities $0.7,0.2$, and 0.1 , respectively.
a) Is $X(t)$ deterministic?
b) Find the first order density function of $X(t)$ at any time t.
2. Assume that an ergodic process $X(t)$ has an autocorrelation function

$$
R_{X X}(\tau)=20+\frac{2}{6+\tau^{2}}[1+3 \cos (6 \tau)]
$$

a) Find $|\bar{X}|$.
b) Does this process have a periodic component?
c) What is the average power in $X(t)$?
3. A random process $Y(t)=X(t)-X(t+\tau)$ is defined in terms of a process $X(t)$ that is at least wide-sense stationary.
a) Show that the mean value of $Y(t)$ is 0 even if $X(t)$ has a nonzero mean value.
b) Show that: $\sigma_{Y}^{2}=2\left[R_{X X}(0)-R_{X X}(\tau)\right]$
c) If $Y(t)=X(t)+X(t+\tau)$, find $E[Y(t)]$, and σ_{Y}^{2}. How do these results compare to those of part (a) and (b).
4. Given two random processes $X(t)$ and $Y(t)$. Find the expressions for autocorrelation function of $W(t)=X(t)+Y(t)$ if :
a) $X(t)$ and $Y(t)$ are correlated.
b) They are uncorrelated.
c) They are uncorrelated with zero means.
5. Determine the largest constant K such that the function

$$
R_{X Y}(\tau)=K e^{-\tau^{2}} \sin (\pi \tau)
$$

is a valid corss-correlation function of two jointly wide-sense stationary processes $X(t)$ and $Y(t)$ for which $E\left[X^{2}(t)\right]=6$ and $E\left[Y^{2}(t)\right]=9$.
6. A small store has two check-out lanes that develop waiting lines. If more than two costumers arrive in any three minute interval. Assume that a Poisson
process describes the number of customers that arrive for check-out. Find the probability of a waiting line if the average rate of customer arrival is
a) 4 per minute
b) 2 per minute
c) 0.5 per minute
7. Let $X(t)$ and $Y(t)$ be independent Gaussian random process with zero means and the same covariance function $C_{X X}\left(t_{1}, t_{2}\right)$. Define the following amplitude modulated signal $Z(t)=X(t) \cos \omega t+Y(t) \sin \omega t$
a) Find the mean and autocovariance of $Z(t)$
b) Find the pdf of $\mathrm{Z}(\mathrm{t})$
c) Support your answer with Matlab Monte Carlo Simulation. Make all needed assumptions and values
8. Let M_{n} be the discrete-time process defined as the sequence of sample means of an iid sequence:

$$
M_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

a) Find the mean, variance, and covariance of M_{n}.
b) Does M_{n} have independent increments? Stationary increments?
9. Let X_{n} consist of an iid sequence of Poisson random variables with mean α.
a) Find the pmf of the sum process S_{n}.
b) Find the joint pmf of S_{n} and S_{n+k}.
10. Noise impulses occur on a telephone line according to Poisson process of rate λ.
a. Find the probability that no impulses occur during the transmission of a message that is t seconds long.
b. Suppose that the message is encoded so that the errors caused by a single impulse can be corrected. What is the probability that the t seconds message is either error-free or correctable?
c. Support your answer with Matlab Mote Carlo simulation. Assume values for λ and t.

[^0]
[^0]: In order to learn Random Processes
 "Take chances, make mistakes, get messy!"
 in the HW assignment!

