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A General ADE-FDTD Algorithm for the Simulation
of Dispersive Structures

Mohammad A. Alsunaidi and Ahmad A. Al-Jabr

Abstract—A finite-difference time-domain general algorithm,
based on the auxiliary differential equation (ADE) technique, for
the analysis of dispersive structures is presented. The algorithm
is suited for cases where materials having different types of
dispersion are modeled together. While having the same level of
accuracy, the proposed algorithm finds its strength in unifying
the formulation of different dispersion models into one form.
Consequently, savings in both memory and computational re-
quirements, compared to other ADE-based methods that model
each dispersion type separately, are possible. The algorithm is
applied in the simulation of surface plasmon polaritons using the
multipole Lorentz–Drude dispersion model of silver.

Index Terms—Auxiliary differential equation (ADE),
finite-difference time-domain (FDTD) method, material disper-
sion, surface plasmon polariton (SPP), Lorentz–Drude model.

I. INTRODUCTION

A NUMBER of finite-difference time-domain (FDTD)-
based algorithms for the analysis of dispersive ma-

terials have already been proposed in literature. These
frequency-dependent algorithms can be categorized into three
types: 1) the auxiliary differential equation (ADE) method
[1]–[4]; 2) the Z-transform methods [5]; and 3) methods based
on the discrete convolution of the dispersion relation [6].
The ADE method offers a more general representation for
the dispersion relation with high flexibility in fitting arbitrary
permittivity functions. Because no assumption of the linearity
of the medium is made, the ADE method is particularly at-
tractive for modeling nonlinear effects [2]. However, when
the problem space involves materials having different types of
dispersion with or without multipoles, the solution algorithms
become complicated. The existing algorithms require a separate
formulation for each dispersion type. To remove this compli-
cation, a recent ADE approach based on the formulation of
the permittivity function as the sum of multiple complex-con-
jugate pole-residue pairs (CC-PR) has been reported [7]. The
CC-PR approach offers two main advantages. First, it pro-
vides an additional degree of freedom in the parameter fitting
process. Second, it unifies the treatment of different dispersion
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models within the general formulation. These advantages,
however, come with a heavy computational cost as several
complex-domain operations have to be performed in the FDTD
algorithm every time step. Furthermore, this computational
cost is justified only for the very limited number of cases and/or
frequency ranges for which fitting using the classical dispersion
models is not satisfactory. A computationally more efficient
approach that serves the majority of dispersive materials is
clearly needed. The ADE-FDTD algorithm proposed in this
letter finds its strength in unifying the formulation of different
dispersion models into one form. Consequently, savings in both
memory and computational requirements are possible. The
proposed algorithm is not only a significant improvement to the
existing ADE methods for dispersive materials but is also very
competitive to the CC-PR approach.

II. FORMULATIONS AND FDTD ALGORITHM

Starting with the most general form of dispersion, the
Lorentzian form, the polarization field in the frequency domain
can be written as

(1)

Shifting to the time domain through inverse Fourier transform
gives

(2)

The key step towards the formulation of a consistent and general
FDTD algorithm is approximating the time derivatives in (2)
at time instant . Thus, one obtains the following update
equation:

(3)

or

(4)

which can be written in the form

(5)

The constants , , and can be found for any form of
dispersion relation (see Table I). In the case of multipole disper-
sion, the same relation is written for each pole with appropriate
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TABLE I
SEVERAL DISPERSION TYPES AND THE CORRESPONDING COEFFICIENTS

values of the three constants. The update equation for the elec-
tric field intensity is given by

(6)

where is the number of poles and the updated value of the
electric flux density is obtained using the standard Yee’s
algorithm.

III. SIMULATION RESULTS

First, the validity of the proposed algorithm is tested. A
wideband pulse of the form with

ns and ps, is normally incident from air onto a
dispersive heterogeneous structure. The structure is composed
of a 12-mm-thick Debye material sandwiched between air and
a multipole Lorentzian material. The dispersion relation of the
Debye medium is given by

(7)

where , , and ns. The dispersion relation
of the two-pole Lorentzian medium is given by

(8)

where rad/s,
rad/s, and . The

reflection coefficient at the air interface is theoretically given by

(9)

where is the thickness of the Debye layer and is the phase
constant. The subscripts and designate, respectively, the
air, Debye and Lorentz layers. Fig. 1 shows the simulated and
exact reflection coefficient at the air interface. The agreement
between the two curves is excellent. It should be noted here
that, for this example, the FDTD solution algorithms proposed

Fig. 1. Reflection coefficient as calculated by the proposed general algorithm
and compared to exact solution.

in [1] and [3] would require eight constants instead of just three.
Next, the general algorithm is applied to simulate the propaga-
tion of a surface plasmon polariton (SPP) along a nanofilm. The
simulated structure has been experimentally studied by Onuki
et al. [8]. The guiding structure consists of a 30-nm thick Ti
oxide layer deposited on a 30-nm thick Ag film. The SPP is
excited using an input light of different wavelengths at the in-
terface between the two layers. The dispersion relation of the
Ag film is modeled into the FDTD algorithm using the six-pole
Lorentz–Drude model with parameters as in [9]. In this case, the
electric flux density is given by

(10)

where represents the weight of the th Drude pole and
represents the weight of the th Lorentz pole. Using the general
algorithm, one immediately obtains

(11)

for each Drude pole, and

(12)

for each Lorentz pole. The computational domain is surrounded
by a material-independent perfectly matched layer [10] to re-
duce the overall artificial reflections. A spherical point source
pulse with carrier wavelengths of 532 and 830 nm is used for
excitation. The point source is located close to the tip of the
nanofilm at one of the ends. The SPP is excited and propagated
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Fig. 2. SPP propagation in an Ag film modeled by Lorentz–Drude model (six
poles); a snapshot of � .

Fig. 3. Simulated propagation length of the SPP for carrier wavelengths of 532
and 830 nm.

along the nanofilm. Fig. 2 shows a snapshot of the field com-
ponent of the SPP corresponding to the 830-nm carrier wave-
length, 23 fs into the simulation. The SPP is well-shaped with
dispersion effects clearly demonstrated. In their experimental
work, Onuki et al. studied the propagation length of the excited
SPP for two different excitation wavelengths; namely, 532 and
830 nm. The propagation length was determined from intensity
curves along the device. It is defined as the length where the
intensity is reduced to of its value at the input side. The
simulated results of the propagation length (Fig. 3) qualitatively
agree with the experimental ones. The slight differences in the
values of the propagation lengths for the two wavelengths are at-
tributed to the difficulty in determining the exact location along

the nanofilm where the SPP becomes mature and the normal-
ization of the intensity becomes reliable. Also, in the FDTD al-
gorithm, a constant permittivity has been assumed for the oxide
layer. It should be noted here that the CC-PR approach would
involve the storage of several complex-valued constants and the
solution of six complex-domain equations [7, eq. (7)] in addi-
tion to several complex-domain multiplications and summations
[7, eq. (6)]. It is also important to note that, within this energy
range, the fitting of Lorentz–Drude pole pairs to experimental
data is excellent [7], [9].

IV. CONCLUSION

An ADE-FDTD general algorithm for the analysis of disper-
sive structures is presented. The algorithm is suited for cases
where materials having different types of dispersion are mod-
eled together. In these situations, the same algorithm is used
to fit all dispersion types. The accuracy of the algorithm was
tested against analytical solutions. Furthermore, the algorithm
was successfully applied in the simulation of SPP propagation
along an Ag-based nanofilm having a multipole Lorentz–Drude
dispersion relation.
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