Electromagnetics

EE 340

Lecture 1 - Introduction

Dr. Mohammad S. Sharawi

EE, KFUPM

Why Study EM?

\square Because EM phenomena is in all electrical/electronic based equipment....
\square Electrical/electronic components/equipment are almost everywhere ...

- Thus, EM is everywhere these days ...
\square Computers, Cell Phones, Car Controllers, Power Lines, etc.
- Wireless communications is based on EM wave propagation ...
- High speed digital design is based on EM wave propagation ...
\square Fields around power lines are EM fields ...

Electromagnetic waves transport energy through empty space, stored in the propagating electric and magnetic fields.

Vector Algebra Quick Review (MATH302!)

- Chapters 1, 2 and 3 in your text book!

$$
\begin{aligned}
& \mathbf{A}=A \hat{a}_{A}=A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z} \\
& A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}} \\
& \hat{a}_{A}=\frac{\mathbf{A}}{|\mathbf{A}|}=\frac{\mathbf{A}}{A}=\frac{A_{x} \hat{x}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z}}{\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}}
\end{aligned}
$$

(cartesian)
projection of a vector on an axis or another vector, $A_{x}=\mathbf{A} \bullet \hat{a}_{x} \quad, \quad A_{y}=\mathbf{A} \bullet \hat{a}_{y}, \quad A_{z}=\mathbf{A} \bullet \hat{a}_{z}$
$\mathbf{A} \bullet \mathbf{B}=A B \cos \theta_{A B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$

(a) Base vectors

(b) Components of \mathbf{A}
\square Position Vector,

$$
\begin{aligned}
& R_{12}=R_{2}-R_{1} \\
& =\left(x_{2}-x_{1}\right) \hat{a}_{x}+\left(y_{2}-y_{1}\right) \hat{a}_{y}+\left(z_{2}-z_{1}\right) \hat{a}_{z}
\end{aligned}
$$

$$
\mathbf{A}=-\hat{a}_{x}+2 \hat{a}_{y}-2 \hat{a}_{z}
$$

find the magnitude of A , its unit vector and the angle that it makes with the z-axis? [On the Board.]

- Cross Product, Cross Product,
$\mathbf{A} \times \mathbf{B}=A B \sin \theta_{A B} \hat{a}_{n}=\left|\begin{array}{lll}\hat{a}_{x} & \hat{a}_{y} & \hat{a}_{z} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right|$ $\hat{a}_{x} \times \hat{a}_{y}=\hat{a}_{z}$
$\hat{a}_{y} \times \hat{a}_{z}=\hat{a}_{x}$
$\hat{a}_{z} \times \hat{a}_{x}=\hat{a}_{y}$
$\mathbf{A} \times \mathbf{B}=-\mathbf{B} \times \mathbf{A}$
- Scalar Triple product,
$\mathbf{A} \bullet(\mathbf{B} \times \mathbf{C})=\mathbf{B} \bullet(\mathbf{C} \times \mathbf{A})=\mathbf{C} \bullet(\mathbf{A} \times \mathbf{B})$
$=\left|\begin{array}{lll}A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right|$
\square Vector Triple Product,

$$
\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B} \bullet(\mathbf{C} \bullet \mathbf{A})-\mathbf{C} \bullet(\mathbf{A} \bullet \mathbf{B})
$$

A) Cartesian Coordinates (x, y, z)

- already dealt with!

$$
\begin{aligned}
d \mathbf{l} & =d x \hat{a}_{x}+d y \hat{a}_{y}+d z \hat{a}_{z} \\
d \mathbf{s} & =d y d z \hat{a}_{x} \\
& =d x d z \hat{a}_{y} \\
& =d x d y \hat{a}_{z} \\
d v & =d x d y d z
\end{aligned}
$$

B) Cylindrical Coordinates (ρ, ϕ, z)

- useful for problems with cylindrical symmetry
$\mathbf{A}=A_{\rho} \hat{a}_{\rho}+A_{\phi} \hat{a}_{\phi}+A_{z} \hat{a}_{z}$
$A=\sqrt{A_{\rho}^{2}+A_{\phi}^{2}+A_{z}^{2}}$
$\hat{a}_{\rho} \times \hat{a}_{\phi}=\hat{a}_{z}$
$\hat{a}_{\phi} \times \hat{a}_{z}=\hat{a}_{\rho}$
$\hat{a}_{z} \times \hat{a}_{\rho}=\hat{a}_{\phi}$
$\rho=\sqrt{x^{2}+y^{2}}, \quad \phi=\tan ^{-1}\left(\frac{y}{x}\right), \quad z=z$
$x=\rho \cos \phi, \mathrm{y}=\rho \sin \phi, \mathrm{z}=\mathrm{z}$
- Transformation matrices

$$
\begin{aligned}
& {\left[\begin{array}{l}
A_{\rho} \\
A_{\phi} \\
A_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & \sin \varphi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]} \\
& {\left[\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & -\sin \varphi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
A_{\rho} \\
A_{\phi} \\
A_{z}
\end{array}\right]}
\end{aligned}
$$

- $\quad d \mathbf{l}=d \rho \hat{a}_{\rho}+\rho d \phi \hat{a}_{\phi}+d z \hat{z}_{z}$ $d \mathbf{s}=\rho d \phi d z \hat{a}_{\rho}$
$=d \rho d z \hat{a}_{\phi}$
$=\rho d \rho d \phi \hat{a}_{\text {z }}$
$d v=\rho d \rho d \phi d z$

C）Spherical Coordinate System（ $\mathrm{r}, \boldsymbol{\theta}, \phi$ ）

used in problems with spherical svmmetrv．

$$
\mathbf{A}=A_{r} \hat{a}_{r}+A_{\theta} \hat{a}_{\theta}+A_{\phi} \hat{a}_{\phi}
$$

$$
A=\sqrt{A_{\rho}^{2}+A_{\theta}^{2}+A_{\phi}^{2}}
$$

$$
\hat{a}_{r} \times \hat{a}_{\theta}=\hat{a}_{\phi}
$$

$$
\hat{a}_{\theta} \times \hat{a}_{\phi}=\hat{a}_{r}
$$

$$
\hat{a}_{\phi} \times \hat{a}_{r}=\hat{a}_{\theta}
$$

$$
r=\sqrt{x^{2}+y^{2}+z^{2}} \quad, \quad \theta=\tan ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right) \quad, \quad \phi=\tan ^{-1}\left(\frac{y}{x}\right)
$$

$$
x=r \sin \theta \cos \phi, \quad \mathrm{y}=r \sin \theta \sin \phi, \mathrm{z}=r \cos \theta
$$

动可分：

- Transformation Matrices,

$$
\begin{aligned}
& {\left[\begin{array}{l}
A_{r} \\
A_{\theta} \\
A_{\phi}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta \cos \phi & \sin \theta \sin \varphi & \cos \theta \\
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \phi & \cos \phi & 0
\end{array}\right]\left[\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]} \\
& {\left[\begin{array}{c}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\sin \theta \cos \phi & \cos \theta \cos \varphi & -\sin \phi \\
\sin \theta \sin \phi & \cos \theta \sin \phi & \cos \phi \\
\cos \theta & -\sin \theta & 0
\end{array}\right]\left[\begin{array}{c}
A_{r} \\
A_{\theta} \\
A_{\phi}
\end{array}\right]}
\end{aligned}
$$

$\square d \mathbf{l}=d r \hat{a}_{r}+r d \theta \hat{a}_{\theta}+r \sin \theta d \theta d \phi \hat{a}_{\phi}$ $d \mathbf{s}=r^{2} \sin \theta d \theta d \phi \hat{a}_{r}$
$=r \sin \theta d r d \phi \hat{a}_{\theta}$
$=r d r d \phi \hat{a}_{\phi}$
$d \nu=r^{2} \sin \theta d r d \theta d \phi$

Gradient of a Scalar Function

\square A vector (magnitude and direction) that represents the maximum space rate of increase of a function A.

$$
\nabla A=\frac{\partial A}{\partial x} \hat{a}_{x}+\frac{\partial A}{\partial y} \hat{a}_{y}+\frac{\partial A}{\partial z} \hat{a}_{z}
$$

\square Gradient in other coordinate systems is given in your text book.

$$
T=x^{2} y^{2}
$$

$$
\begin{aligned}
\nabla T & =\hat{\mathbf{x}} \frac{\partial T}{\partial x}+\hat{\mathbf{y}} \frac{\partial T}{\partial y}+\hat{\mathbf{z}} \frac{\partial T}{\partial z} \\
& =\hat{\mathbf{x}} 2 x y^{2}+\hat{\mathbf{y}} 2 x^{2} y
\end{aligned}
$$

Divergence of a Vector and Divergence Theorem

\square The divergence of A at a point P is the outward flux per unit volume as the volume shrinks about P .

$$
\nabla \bullet A=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}
$$

- The divergence theorem states that the total outward flux of a vector field A through the closed surface S is the same as the volume integral of the divergence of A.

$$
\oint_{S} \vec{A} \bullet d \vec{s}=\int_{V} \nabla \bullet \vec{A} d v
$$

Curl of a Vector and Stokes's Theorem

\square The curl of A is a rotational vector whose magnitude is the maximum circulation of A per unit area as the area tends to zero and whose direction is normal to the direction of the area when oriented to make maximum circulation.

$$
\operatorname{curl}(A)=\nabla \times A
$$

\square Stokes's Theorem: The circulation of a vector field A around a closed path is equal to the surface integral of the curl of A over the open surface bounded by the path.

$$
\oint_{L} \vec{A} \bullet d \vec{l}=\int_{S}(\nabla \times \vec{A}) \bullet d \vec{s}
$$

\square More exercises in the book and during the first few lab sessions.

Next time ...

\square Do Not Forget to check the class page often ...

