KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF ELECTRICAL ENGINEERING

EE 418 INTRODUCTION TO SATELLITE COMMUNICATIONS 6

EXAMINATION I

November	19,	2006
----------	-----	------

NAME :	
I.D. # :	

- Q.1 Answer the following questions. (a question may have more than one answer).
 - 1) Which of the following parameters are needed to find the look angles for a geo-stationary satellite? a. Earth station latitude b. Earth station longitude
 - c. Satellite range d. Satellite longitude
 - 2) An azimuth angle is given as 270° . What compass direction is this? a. North b. East c. South d. West

3) An earth station is located in the Equador, which is in the southern hemisphere, at a longitude of 80° west. In which part of the sky would you locate a satellite with a sub-satellite point longitude of 115° west.

- a. North b. North-East c. East d. South-East
- h. North-West e. South f. South-West g. West

4) The TT&C sub-system allows an earth station controlling the satellite to:

- a. Send commands to the satellite b. Change the satellite orbit d. Receive status data
- c. Receive mobile satellite services
- 5) The space segment of the basic satellite system consists of:
 - b. The TT&C earth station
 - c. FSS earth station d. Any VSAT connected to the system
- Q.2 Calculate the look angles for an earth station at Dhahran, Saudi Arabia to establish communications with ARABSAT 2A at 26.0° East. Dhahran location is 26.180° North and 50.08° East.

Q.3 The radiation intensity of an antenna is defined in the region $0^{\circ} \le \theta \le 180^{\circ}$ & $0^{\circ} \le \phi \le 180^{\circ}$ and is given by: $U(\theta, \phi) = \frac{25}{\pi} \sin \theta \sin^3 \phi$. Calculate the following:

- i) The radiated power P_{rad} in W and dBW.
- ii) The directivity of the antenna (D_0) .

a. The satellite

- iii) The gain of the antenna if the antenna efficiency is 85%
- iv) The half-power beamwidth (HPBW) in the elevation plane (y-z plane)

PROBLEM #	Q. 1	Q.2	Q.3	TOTAL
Marks				
Maximum	30	30	40	100