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ABSTRACT

This paper presents a potential-based technique
for intercepting a maneuvering target that is moving
amidst known stationary obstacles. The method is a
generalization of the Harmonic Potential approach
which is used to plan a path to a stationary target.
It employs a time dependent potential field that is
generated using the linear Wave Equation. It then
construct a first order time dependent nonlinear
differential equation to generate a trajectory leading
from an initial point to the target. Proofs of the
ability of the technique to converge to the target as
well as its ability to avoid obstacles are supplied.
Simulation results and comparisons with other
approaches are also provided.

I. INTRODUCTION

Since its humble start from the simple idea of a
repulsor and an attractor {1,2], the potential field
approach to path planning has progressed into an
active and promising area of research. An important
class of these techniques uses harmonic potential
fields by first solving the Laplace equation subject
to the proper boundary conditions (BC), then using the
gradient flow of the resulting field to steer motion
along a safe path to the target. The approach was
found to effectively guide motion in a complex
environment. It can tell whether a path exist
connecting a point in the environment to the target
(the degeneration of the gradient field in the local
neighborhood of the point of interest is an indication
that no path to the target exist). Also, efficient
numerical algorithms exist for solving Laplace
equation. The Harmonic potential approach was first
proposed by conolly et. al. [3]) who solved Laplace
equation subject to a constant positive potential on
the obstacles boundaries and a zero potential on the
location of the target. Such a setting of BC results
in a fast decay of the potential field and a rapidly
vanishing gradient field. The problem was alleviated
by changing the boundary conditions on the obstacles
to the homogeneous neumann conditions while forcing a
positive potential on the point from which motion
starts and a zero potential on the location of the
target. Decuyper and Keymeulen arrived at such a
setting for BC by modeling the natural flow of an
incompressible fluid in a container that has a source,
a sink, and rigid objects in the locations of the
obstacles (4,5). They mentioned that the same setting
of BC governs the flow of electric current in a
conducting sheet between a point with positive
potential and that with a zero potential, where the
obstacles are modeled as perfect insulators. They also
reported that the path marked by such a flow is the
shortest path to the target. It ought to be mentioned
that the same relation governs the flow of the heat
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flux in a thermal conductor with the obstacles modeled
as perfect thermal insulators. The same results were
also reported by Blake and Tarasenko (6], and Kim and
Khosla [7). Lei (8] suggested an implementation of the
approach using neural nets. The approach was recently
generalized by Masoud and Bayoumi [9,10] who used
vector potential to enhance the steering capabilities
of the method.

A more general case involves targets that are
moving in a stationary environment. Such a problem can
be of considerable difficulty, especially, if the
method is to engage a target that is intelligently
maneuvering to evade capture in a familiar complex
environment {(e.g a maze), and is well informed about
the movements of its pursuer. In this work we suggest
a novel and complete (i.e. if there is a way to

intercept the target the planner will find it) path
planner to solve the above problem. The planner
assumes the form of the dynamical system

x = £(V(x(£),x (£),T) x(0) = x €

and is required to have

lim |x(t) - xp(t)| — 0
t® .

and (1)
x(t) € Q for all t

where Q is called the workspace and is a subset of the
R" space (Q < RY, T 80, xp(t) is the target point

(xp € Rn) and is restricted to opegaﬁf %nside Q all
the time, x € R", f: R — R, V: RxR xR — R, m is
the dimensionality of T (m = n-1), and Xs is an

initial starting point. Synthesizing both f and V is
done by extending the harmonic approach to the moving
target case. The navigation field (V) is constructed
using the linear transient wave equation, and the path
to the target is laid by a first order time dependent
differential operator (f). The planner should be able
to successfully intercept the target despite the
following implicit assumptions

1- The target is intelligent.

2- The target has an accurate model of the environment
and good information about the movements of its
pursuer.

3- The geometry of the environment may be multidimens-
jonal and complex.

4- The pursuer lacks the knowledge about the psycholo-
gical profile of the target, its tendencies and
habits which are usually used to construct a stati-
stical model of behavior that aids in its capture.

5- The pursuer lacks the time to thoroughly study the

situation and derive a suitable plan for capturing
the target.



On the other hand, the pursuer is assumed to have a
good model of the environment, and is well aware of
the location of the target. Also, the pursuer assumes
that the target has limited power; therefore, it can‘t
instantly change position or orientation (i.e. xpE

Cl). our work focuses on providing the guidance field
that will lead to the capture of the target. If this
field is to be converted to a control field that suits
the propulsion mechanism of the pursuing robot, the
result of Utkin et. al. can be used [18,19]). In this
approach sliding mode theory is used to force the
system (robot) trajectories to coincide with the flow
lines of the guidance field. The sliding surface that
is used has the form

o(x,%) = x - E(E)EV( ) (2)

where € is an arbitrary function of time.

Although an approach was suggested to carry out
such an extension using the Diffusion equation {11]
it totally relied on an analogy with no proof of
convergence or obstacle avoidance. Same thing can be
said about the traditional approach for dealing with
the problem which uses Laplace equation in a
quasi-stationary manner. An example is provided where
the target can engage in a simple maneuver to
successfully evade a pursuer that is utilizing these
techniques.

This paper is organized as follows: Section II
suggests a general structure for a Potential-based
navigation technique. Section III presents the
proposed approach. In section IV the proof of
convergence and ability to avoid obstacles are
provided. Simulation results and comparisons are given
in section V, and conclusions are placed in section
VI.

II. A PROPOSED STRUCTURE

All potential-based techniques for path planning
start by encoding the workspace geometry and the
target location in a field (scalar or vector) that is
spanning the whole workspace. Such a field function as
a medium to communicate the location of the obstacles
and the target to every point in the space. The field
is constructed in a manner that would enable a
receiver to decode the message by sensing the field at
and in the local neighborhood of the present location.
After the message is extracted a decision is made that
is subsequently followed by a motor action to yield a
step in what is perceived to be the right direction.
This is iteratively repeated till, hopefully,
convergence is safely achieved. Existing techniques
simultaneously perform the act of sensing, decision
making, and course alteration in a reflexive manner.
Therefore, the three acts are lumped in one unit that
is given the name TRACKING MECHANISM. We believe that
a potential-based planning technique can be
represented by the block diagram in Figure-1.

III. THE PROPOSED TECHNIQUE

As can be seen from the previous section a
potential-based method can be divided into two stages:
A stage that generates the navigation field, and a
stage that utilizes that field for tracking. In the
following a structure for each stage is supplied.

FIELD GENERATION :

Scalar fields which describe changes in both time
and space can be generated using the Wave Equation
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Figure 1: Basic Structure of Potential-Based.
Path planning techniques.
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The reason that the wave equation is chosen (for
example, instead of the diffusion equation) for
constructing the navigation field, is due to the
nature of its solution. From the method of separation
of variables the solution of the wave equation can be
written in the form V(X,t)=R(X)T(t), where R is
dependent on position only, and T is dependent on time
only. It can be shown that the solution can be reduced
to solving the following two Helmholtz equations

VR + AR = 0

2
BT, (an? = 0 (1-D Helmholtz eqn.)
at (4)

It is known that the fundamental solution of the
Helmholtz equation in N-D provides N orthogonal basis
functions [12]). Therefore, the above equations yield
N+1 orthogonal basis, which are enough to represent
(using the Generalized Fourier Series) an arbitrary
smooth function of time and space. Field generation is
carried out by solving the above wave equation subject
to the following BC (Figure-2)

(N-D Helmholtz eqn.)

V(r.t) = ¢ c>0
V(Xp(t),t) = 0 Xp(t) € & (5)

where X (t) is the differentiable trajectory of the
3

target. The initial conditions (V(X,0)) can be
obtained by solving
Vv =0
subject to
’ v(ry = ¢C c>0 (6)
V(Xp(0)) = 0 Xp(0) € Q

The existence and uniqueness of the solution of the
above time dependent boundary value problem were

proven in [13,14,15].
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Xp(x,t) [V=0]
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Figure 2 : The boundary conditions.

THE TRACKING MECHANISM

In the static case a path to the target is
established by tracking the gradient field of the
potential

X = -W(X).

for the time varying case, the field assumes a more
general form that involves a time varying vector
potential A

X = -(W + —) . (7)

In the sequel the following structure for &8A/38t is

shown to achieve absolute convergence (asymptotic
stability)
A TV(X,t) | 3V(X,t) (8)
t 2 t .
° fovx. o) 2

The above mechanism has a singularity at the target
location X=Xp (V(Xp,t)=0). To remove this singularity
the absolute convergence requirement is relaxed to
that of convergence (stability) only. In this case the
object is required to get an arbitrary small distance
p close to the target. A guiding mechanism that can
achieve this and is free of singularities has the form

X = - (WV(X,t) + Lt)z . %(X,t))
B(lwix, e) 5
where : (9)
and B(X) = X Xx=p
n(X) X<p

The function 7(X) 1is a monotonically increasing
function that satisfies the following properties

n(o0) =¢ , np) =p p>e>0
dn (X) =1, an(X) =0
dx X=p dax X=0

A form for w(X) that satisfies the above conditions is

2pde-xz + ﬁl-xB O<e<p .
2 P3

n(x) = € +

P
It can be shown that the above dynamical system which

can be placed in the general form X(t) = g(X(t),t)
satisfies the global Lipschitz condition {16].
Therefore, it has one and only one solution over
te(0,w). This in turn guarantee that

i -X is differentiable almost every where (X exist).

ii -The above equation holds for t where X is defined.

iii~And X(t) satisfies
t

X(t) = Xo + Ig(X(T),T)dT- (10)
0

IV. MOTION ANALYSIS

The ability of the path to converge to the target
and to avoid obstacles is analyzed using Liapunov
direct method.

THE WAVE POTENTIAL IS A LIAPUNOV FUNCTION CANDIDATE

It is shown here that a potential function that
is generated using the Boundary Value Problem in
section III is a Liapunov Function Candidate (LFC)
[17).

It is well known that the solution of the wave
equation 1is analytic. This in turn meets the
requirement of a LFC to be differentiable or at least
continuous. Since at a frozen instant of time (ti) the
potential V(X,ti) is a harmonic function which has its
global maxima and minima at the boundary of 2 (I v
Xp), the global minima of V occurs at Xp (V(Xp(t)=0,
note that V(I')=C) which in turns results in the
following for every ti € t

1- V(X,ti) = 0 at and only at X=Xp.

2- V(X,ti) =2 0 for every Xeq.

This satisfies the remaining requirements for the wave
potential to be a LFC.

CONVERGENCE ANALYSIS
A point Xp is said to be an equilibrium point if

X = g{Xp,t) = 0 Vt=zto. (11)

Such an equilibrium is globally asymptotically stable
(X — Xp as t — o for every X(0)e) if 3 a continuou-
sly differentiable positive definite function V(X,t)
such that

V(X,t) =0 xeR, vVt zcto,
and vViX,t) = 0 only at X = Xp
y d N
V(X,t) =Fv(x,c) =0 XeR, V t=to,
and V(X,t) =0 only at X = Xp
N _dv(X,t) _ 8V(X,t) .
V(X,t) = v ey + W(X,t) ‘X (12)

by substituting the above expression for X in V(X,t)
we have

vy = ZEE et cwe « a3
TS G, - v, f
jwvix, )]

which satisfies the conditions on V(X,t). To avoid the
problem of the singul- arity at X = Xp the reguirement
of asymptotic stability is relaxed. Instead of
achieving asymptotic stability

Lim X — Xp for every X(0) € Q

-0

we are going to require stability only. For such a
case it is enough that X enters the neighborhood of
Xp; ie



Lim X —> Bp(X)
€0

where Bp(X) : { X: fX - Xo| < p ). (14)

Therefore, the condition that V(X,t) be strictly
negative definite can be relaxed, allowing it to be
indefinite in X € Bp(X).

AVOIDANCE OF OBSTACLES

The ability of the planning technique to avoid
forbidden regions {0} (or equivalently X(t) € Q V t)
is of equal importance as its ability to converge to
the target

X(t) ¢ {0} t = [0,m)

and lim X(t) -» X (t) (15)
t—xo e

Our approach to analyze the behavior of the technique
towards the obstacle focuses on studying the motion in
a asmall region surrounding the forbidden regions
(F"(X)). Proving that the  guiding mechanism can steer
the path away from I' in " is enough to guarantee that
the path will not intersect (0O} (Figure-3).

Let us first begin by measuring the distance from
I' to the current position of the path (X(t)). This
distance is denoted by the variable Xn(t)

Xn = X' -n

where n denotes a unit vector normal to I'. Since n is
not a function of time (stationary obstacles), the

rate of change of Xn (Xn) can be calculated as

xn=x-n=v(1+"1—“2%)vv-n= (16)
o
- (1 4+ 1 v A

2 3t an
I wi "

We are going to assume that motion starts outside T
(Xn>0) . This means that if we can prove that a measurg
of the length of Xn is always increasing in T
(Liapunov theory of instability is used), we can prove
that the path will never intersect (0O)}. Let us define
Va as a measure of the length of Xn

Va = fxa)® = xn’. (7
Its derivative with respect to time (Va) is
Va = 2°Xn*Xn = - 2:Xn-( 1 + 1— i ) BV_ (18)
2 8t an
(|

since we are constraining V(X,t) on ' to a constant

av

o al 0 Xel. (19)

Since V(x,t) is the solution of the wave equation and
it is differentiable in both time and space, for a
sufficiently small & we can make the following
approximation

av 3
-t = 0 Xerl (20)

Since at any frozen instant of time V is harmonic with
its global maxima at I' we have

av S
T < 0 Xel . (21)

Therefore, Va can be approximated in r6 as

y av
Va = - 2:Xn- " (22)

Since for X € r5 , Xn > 0, we have

Va > 0 X e F6 (23)

This means that Va is always increasing with

time.Therefore, the magnitude of Xn is always
increasing, and X is being steered away from [.
V RESULTS
In this section the tracking and obstacle

avoidance capabilities of the proposed method are
tested for different patterns of motion. The
performance is also compared to that of the
quasi-stationary laplace method and the diffusion
equation strategy. In figure 4 a stationary target is
used. The broken lines represent the boundary of the
obstacles and the thick solid lines represent the path
that is generated by the techniques. It is observed
that all techniques exhibit equivalent capabilities in
terms of converging to the target and avoiding the
obstacles. The minor differences in the shape of the
path are probably due to the implementation and the
particular choice of parameters. Same observations
were recorded for slowly moving targets. Figure 5 show
the different techniques tracking a target moving
along the X-axis. Although the performance of the
different techniques in terms of their tracking
abilities is comparable for slowly moving targets, the
disparity greatly widens when a fast moving, rapidly
fluctuating target is considered. In figure 6 the
linear motion along the x-axis is supplemented with
high sinusoidal oscillations along the y-axis. As can
be seen these fluctuations confused the
quasi-stationary laplace scheme leaving it undecided
whether to proceed right or left of the corridor exit.
As for the diffusion strategy, it was able to proceed
in the general direction of the target; however, it
wasn’t able to keep up with its rapid fluctuations. On
the other hand, the wave equation method was able to
closely follow the target.

a. the region in which obstacle avoidance is investigated.

Figure 3
V(X,1)

c

Xp S |

b. the behavior of the potential along the nomal of the
obstalce surface.
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Figure 4a: Laplace (fixed target).

Figure 5a: Laplace ( Motion along X).

Figure 6a: Laplace (oscillating).
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