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ABSTRACT

In this paper the Artificial Vector Pot-
ential is used for constructing a navig-
ation control that can drive an arm
manipulator to a target set while avoid-
ing undesired regions in the workspace.
It is shown that a Vector Potential
Field can better navigate a robot than a
Scalar Potential Field. The strategy
that is suggested for constructing the
navigation control is very flexible in
the sense that it allows the addition or
deletion of obstacles with minimal adju-

stment to the control. An efficient
technique to generate the navigation
field in the N-D space is proposed.

Simulation results are also provided.

I. INTRODUCTION

The Artificial potential Field approa-
ch was simultaneously proposed by Khatib
[1}), Miyazaki and Arimoto [2], as well
as Pavlov and Voronin [3]. It gained
popularity because of its ability to
transform path planning into a task that
can be performed by the low level contr-
oller. This meant a great reduction in
computational complexity. In general, a
planning technique navigates the system

(1)

where g is the position in the natural
coordinates of the robot, D is the iner-
tial matrix which is symmetric and
positive definite, ¢ is a vector contai-
ning the coriolos and centripetal torg-
ues, g is a vector containing the grav-
ity torques, and u is the torque needed
to drive the position to a target set
{T}, while avoiding the obstacles ({A}.
To perform such task, Kahtib augmented
the system potential with an artificial
potential (Vart) that is the sum of an

D(glg + c(q,q) + g(g) = u
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attractive potential field surrounding
the target (Va),and a repulsive potenti-
al field (Vr) fencing the obstacles.u is
taken as the gradient flow of that field
u = VWa + Vvr. (2)
This approach faced two major problems.
The first has to do with the formation
of local equilibrium zones that can trap
the robot before reaching its target.
The second problem is caused by using an
inverse quadratic function to generate
Vr, which require an infinite control
effort. Khosla and Volpe [4] alleviated
these problems by generating the potent-
ial wusing superquadrics formulation;
their approach was found to be effective
in an uncluttered environment.Warren [5]
reduced the minima problem by first cho-
osing a trial path, then modifying it
under the influence of the potential fi-
eld. Krogh [6] formulated the problem as
one of transferring the state of a dyna-
mical system from an initial to a final
state. He introduced the idea of the Ge-
neralized Potential Field that is a fun-
ction of both position and speed, and
further derived the necessary conditions
for convergence [7]. However, no formal
way was supplied to generate the control
action.Tilove [8] compared the classical
potential approach with the generalized
one,and found that the generalized pote-
ntial produces a smoother path. Koditsh-
chek and Rimon [9,10,11] constructed a
potential function that encodes the des-
ired behavior in the sense that it has a
global minima at the target and takes
lower value away from the obstacle than
at its boundary. The gradient flow was
shown to drive a robot to its target
with zero velocity, while avoiding obst-
acle along the way [12]. The mechanical
system for which the field is derived
uses a Lagrangian that is specified by a
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kinetic energy cost functional where the
gravity term is not present. Such a term
or residuals of it will cause a steady
state error and could lead to collision
with the obstacles. Several techniques
utilizing, Harmonic and Newtonian Poten-
tial Fields [13]-[16]) were suggested for
navigation. Unfortunately, the gradient
flow from these fields only marks an
obstacle free path to the target, and
can‘t be used to provide the control
input. In a recent paper, Utkin et al
[17) supplied an interesting technique
that enables the use of the field from
these methods for steering the robot.
They used sliding mode theory to make
the system trajectory coincide with tho-
se of the gradient flow of the navigati-
ng potential field.

The objective of this paper is to
construct a realizable, smooth, bounded
control that would prevent a robot from
entering undesired regions and guarantee
convergence to a target. To achieve this
goal,we found it necessary to use Vector
Potential Fields (VPF) which are shown
to have a better ability for navigation
than Scalar Potential Fields (SPF). This
paper is organized as follows. Section
II provide a qualitative evaluation of
SPFs and points out the advantage of
using VPFs. Section III provide a strat-

egy for —constructing the navigation
control. Sections IV, and V, tackle the
implementation of VPF’s. Section VI

contains some examples, and conclusions
are placed in section VII.

II. A Qualitative Evaluation of SPF’s

To the best of our knowledge, current
potential-based planning techniques con-
struct the navigation control from the
gradient flow of a SPF

u = -V (3)
This flow is known to be normal to the
associated family of equipotential surf-
aces, along which W vanishes, making it
impossible to direct motion along these
contours. This can also be deduced form
the vector identity

VxVWw = 0
where the curl operator

(4)

(Ux ) detect a

vector field circulating the closed equ-

ipotential contours. As a result total
controllability in the sense of being
able to arbitrarily direct motion in the
space can not be achieved. Moreover,
with the loss of controllability over
the tangent subspace which spans N-1
degrees of freedom of an N-D space, con-
trollability is expected to deteriorate
with an increase in dimensionality. To
remove this deficiency and to synthesize
a complete set of force fields that are
able to freely project a force in any
direction in the space, an underlying
VPF (A) can be used to generate the
navigation control
u = -(Vv+UxA ) V-A=0. (5)

A is made to have a purely circulating
nature by setting its divergence to
zero. Figure-1 qualitatively illustrates
the behavior of flow fields from both a
SPF and a VPF.

III. The Proposed Navigation Strategy

A unifying factor among the diverse
potential-based planning techniques is
the requirement that the navigation
control tie the internal environment of
the robot represented by its dynamics to
the external environment represented by
the workspace and the obstacles in it.
Such a function necessitates that the
control accommodate the needs of both e-
nvironments by being sufficiently smooth
and bounded to meet the limitations on
the dynamics of the system, and flexible
in the sense that the effort needed to
adjust the control is proportional to
the changes in the workspace. One way to
achieve such a goal is to divide the
navigation control into two parts

u=u +u (6)
g 1

where ug properly controls the robot in
the obstacle-free space, and drives the
motion to the desired target. ug can be
a simple Proportional-Derivative (PD)
control [18]. ul is called the steering
control, and is strictly localized to
the vicinity of the obstacles such that
the controls corresponding to different
obstacles do not intersect. ul is desig-
ned in the 1local coordinates of the



obstacles then transformed to the natu-
ral coordinates of the robot. It functi-
ons to smoothly deflect the motion away
from the obstacles in a manner that
prevent collision and allow ug to sweep
the robot to the target (Figure-2). By
totally shifting the task of managing
the obstacles to ul (ug is independent
of ul; while, ul is dependent on ug and
the geometry of the corresponding obsta-
cle) great flexibility is achieved in
the sense that the addition or deletion
of an obstacle affects only the particu-
lar corresponding steering control.

ul is divided into two functionally
distinct components. The first component
is radial to the obstacle surface. It
acts to prevent the robot from penetrat-
ing the region occupied by the obstacle
(uln). It is called the Penetration Pre-
vention Control (PPC). The function of
the other component is to align the
robot on the right part of the obstacle
surface to allow ug to sweep the robot
to the target (ult). This component acts
tangentially to the obstacle surface,
and is called the Local Alignment Contr-
ol (LAC). For a smooth diversion of the
motion away from the obstacle, the stee-
ring control is made to occupy a surrou-
nding finite region (Ad). The proper
control on the inner boundary of A8 (I')
is derived in the following sections,
while the control on the outer boundary
(I'S) is set to zero. The generation of
ul inside ASd is treated as a Vector Bou-
ndary Value Problem which, in this
paper, is reduced to solving four scalar
boundary value problems. The main focus
of the rest of this paper is on design-
ing ul.

IV. The Boundary Steering Control

In this section the control at the
inner boundary of A8 (ul'l) is derived in
terms of the normal (en(I')), and tangent
(et(I')) to I'. Similar to ul, ull has two
components, the boundary penetration
prevention control (BPPC), and the boun-
dary local alignment control (BLAC).

The BPPC (ul. )
—_— in
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Here, it is shown that the control

(7)

can prevent the robot from entering a4
(8Add). a1 is a scalar positive function

uFln(q,q) al(q,q)en(r)

wi(q,q) = a1 (qq + @ (g ,q). (8)

where a1 (q ,q )=Ca|g |-aqt (g ). (9)
n n n n

and gn is the radial distance form T to
the robot position .
q =4q e () (10)

For convenience the system equation is
placed in the following form

4 I £(q,q)+D (qul dt (11)
where f£(q,q) = -D (@) [c(q, &) -g(q)+ug].

Let G(gn) be a measure of that distance

1 2
- 9, (12)
To guarantee that the robot will not
enter I', the time derivative of G must
always be positive. It can be shown that
this condition reduces to guaranteeing
that
£

I &5 (D) [£(q, @) +ai (@, @)D" (@) e (T)]de=0

(13)
| 4|

where t is the time at which the robot
enters A8, and ¢ is the speed at which
it enters that region. It can further be
shown that the following conditions can

satisfy (12)

G(qn)

C L

4

a1 (g, e (MDD (@)e (Mdt
n n

c .
sup|e (T)£(q,q) |

Inf all(q,Q) = q’qt T
q.9 min[en(F)D (q)en(r)]
q
and aqi'(qn) >0 (14)
la, |
Caz z

54 min(aqll'(qr)l)min[ertl(l')D-l(q)en(r')]
q q

n
where 8d is the minimum width of Ad4.
The BLAC (ul'_ )
e 1t

The first step in designing the BLAC is
to partition I' into two parts I'tr, and



[o, such that when ul=ulln,
the following: at t=t1

q satisfies

q(ti) €It then lim g(t) € T
and t -0
q(t1) e€ TIo then lim gq(t) € To
- (15)
The second step is to clamp the motion
to the obstacle in the Io regions. This

may be accomplished by the control

ure

n uFln- n(q)urln(q + 6-en(F).q)

(16)
where 8 is arbitrarily small and positive
and n(q) has the form

1
0

q € Io
n(qg)

qelT

The final step is to construct the BLAC
on I' to drive the motion toward TI'r.
First, we need to define the vector §

€ =11 &.. Ev-1 ] £ €0

where TI' is the image of Q, and &§ is a
parametric representation of I'. The con-
trol is constructed by first choosing a
point E€rel'r. Ensuring convergence to £r
ensures that the robot will enter TI'r.
Using the passivity property of robotics
manipulators [18], it can be shown that
the system forces that determines
convergence to a point in the position
space of a manipulator has the form

fa(qg) = lim £(q,q)
a->0
Therefore, the proposed control can be

selected as follows
€ - &
"E - Er" (17)

In the following, it is shown that the
above control can ensure convergence to
&r. The system equation in Q@ (on TI') has
the form

€ = fr(q(€)) + D‘l(q(g))urlt(g)

urlt(E) = -oa2(q) -

(18)

t
Where ft(q(&)f=et(q(£&))£fa(g(£)).To prove
convergence, the following Liapunov func-
tion is constructed

E(€) = (1/2)-(€ - &) (€ - &) (19)
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We need to show that the control can
make the time derivative of this
function negative definite

E=(£-&0)" €
=(€-€1) " (£at (@ (£)) 4D (q(€))ul (€))

(€-€0) "D Y (q(&)) (E-€x)
|€-€x
+ (E-&r)“Eqr (q(£)) 20)

Let us consider the radial coordinates
ep(€) in Q, and the tangent to it et(f)

€ ~ &
1€ - &I

Let fqt be represented in terms of these
components

far = N(q(€))ep(€)+n2(q(€))eT (&)

Substituting the above term in

=-a2 (q(§))

ep(€) =
(21)

we get

(E-&r) "D 1 (q(&)) (E-Ex)
l€-€x|
+|€-Er]ep(€) (m ep(€)+m2 eT(£))

(E-€r) "D (q(€)) (E-€x)
l€-&x|
+n1(a(§)) - |€-&x|

-2 (q(£))

-2 (q(&))

(22)

It can be seen that an a2 can be chosen

-
=

to guarantee that £ is negative definite
This ensures that the motion is driven
to I'r where it is swept to the target.

V. The Steering Control

To gradually decelerate the robot
till it is stopped before colliding with
the obstacle, and to smoothly deflect
the motion toward TIT, the steering
control 1is required to occupy a finite
region around A (AS8) where its strength
is set to zero at I8, then gradually
builds up to full strength at TI. The
control inside A& is generated from its
values at the boundaries. Other
constraints may be added to control its
strength. Such a task is carried out by
solving a Vector Boundary Value Problem



(VBVP). Solving a VBVP is, in general, a
difficult task. In [19] Morse and
Feshbach solved a number of VBVP in
the 2-D and 3-D case for a limited class
of natural coordinates. Since the
interest is in the N-D case, a different
approach is sought. The PPC and LAC
components are constructed separately in
a manner that guarantees orthogonality.
Both components have the form

M (q,49)-Q (q)
n n
Mt(q.q)-ot(q)

u (q,9) =

ult(q,q) (23)

Where Q is the basis vector phase field,
and M is a scalar magnitude field that
modulates the strength of Q. Each field
is generated by solving a Scalar BVP
(SBVP). Collectively, these SBVP’'s are
equivalent to solving a VBVP.

The PPC

To generate Qn, the following SBVP is

solved (Figure-3)

V2V1n(q) =0 subject to

Vlnl = C, and Vlnl =0 cC>20
rs
@ (@ = — 2D (3
[Wina |

Mn is obtained by solving

2
V'v2n(g) = 0 subject to

V2n| =1, and V2n| =0
I, Tréa rs
al(g,q) V2n(q) qeAdd
M (29 a1(I'8d,q) *V2n(q) geAd
(25)
If the PPC is to, as well, clamp the

robot to To, an additional boundary
condition is added
V2n| = -1
To

where Fé is the portion of I' that corr-
esponds to [o,and ' 1is an equipotential
surface inside A8 chosen equal to C/2.

The LAC

The following steps are use for constru-
cting the LAC component (Figure-4)
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1- Choose £r inside I't, and &n inside To
2- Construct the following lines on the
surface of the obstacle

p_={a:d(t)=-Qn(q),0st=T,q(0)=Er, q(T)€lS)

p ={q:q(t)=-Qn(q) ,0st=T,q(0)=€n, q(T)elS)
" (26)
3- Solve the following BVP

V2V1c(q) =0 subject to

vie| = 0, and vie| =¢C cC>0
pr pn

8Vic/8n = 0 at LT, and '3

(27)
1
o (@ = —ara)
[vvic(a |

4- Compute the magnitude field by

solving the following BVP
V2V2c(q) =0

vae| =1, and vae| =0
r,r rs

subject to

a2(q,q) V2t (q)  inside T

M ,q) = . , 4
c(q Q) o2 (F'8a,q) -vae (g) outside T
(28)
Existence and uniqueness of the solution
of the BVP were proven [19].It can also
be shown that Qt is orthogonal to Qn.

The following formulae can be used to
generate the solution of the Laplace

SBVP from its boundary conditions [20]
vin =t § (T o(r, q) via) - ZiE ) as
s
kg SLERS -
V(q)'axf(r) agér'q))ds

where S is the closed surface surround-
ing A8, r is a point inside A8, g is
confined to the boundary, and G(r,q) is
the fundamental solution of the Laplace
BVP (Green’'s function) in the specified
dimension.

VI. RESULTS

Simulation is done for a polar manipula-
tor with the following system equation



Mr>o ] 2Mrr@ T
0o M||r * -Mr92 .
where M is the mass (M=1lkg), r is the

radial distance, 0@ is the angle from the
X-axis.ug is a PD controller (tT=kp(6-64)

(30)

+kd-0,F=kp(r-rd)+kd-r) .kp=.5,kd=5,0(0)=
4S°,r(0)=V§,0d=0,rd=2.Figure-5 shows the
path of the robot gripper in the free
space (ul=0). A rectangular slap (.63x=3
,.83ys1.2) is placed between the gripper
and the target. In Figure-6 an SPF (LAC=
0) is used to prevent collision. As can
be seen the robot got trapped in a local
equilibrium position before it could
reach its target. In Figure-7 a VPF is
used for navigation. As can be seen ul
was able to prevent collision,yanked the
arm from the local equilibrium zone, and
drove it around the obstacle so that ug
was able to sweep it to the target.
Figure-8 demonstrates the decoupled
nature of the steering control.For this
case a blind navigation strategy is used
where the LAC is a simple unidirectional
field circulating the obstacle.It can be
shown that this strategy can be success-
fully used with convex obstacle and
circularly symmetric global attractors.
Although the path is of a lesser quality
than the one that can be obtain using
the above procedure of generating LAC,
its simplicity, invariance to rotation
and transslation of the obstacles, and
the little amount of information need to
construct it makes it an attractive
choice.

VII. Conclusions

The use of artificial VPF's is explo-
red for navigation in a cluttered envir-
ironment. We demonstrate the advantage
VPF’'s has over SPF’s in terms of their
ability to project the navigation forces
along more than one degree of freedom in
the space to better navigate the robot.
Such an advantage enables the use of a
flexible navigation strategy, that isn’'t
possible to implement with SPF’s. We
strongly believe that the VPF approach
to navigation has a promising future.
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Figure-1: Superposition of fields
from VPF and SPF

Figure-4: The LAC component
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Figure 8: multi-obstacle environment.
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