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Abstract-A provably-correct discrete version of the harmonic
potential field (HPF) approach to motion planning was
suggested in [20]. The approach utilizes the strong relation
between graph theory and electrical network theory for
developing a framework of theories and definitions that, among
other things, can strongly aid in developing a discrete HPF
planning approach. This framework was used to suggest an
efficient, optimal, novel, discrete planning method called the
M* algorithm. In this paper an in-place, successive relaxation
procedure is suggested for implementing the M* algorithm.
Also, the utility of the discrete HPF approach is demonstrated
in robust, data network routing.

I. Introduction 
Harmonic potential fields (HPFs) provide a means by which the
behavior of a robot may be sensitized in a provably-correct,
constrained, goal-oriented manner to the context in which a
robot is operating. An HPF is generated using a Laplace
boundary value problem (BVP) configured using a properly
chosen set of boundary conditions. There are several settings
one may use for a Laplce BVP (LBVP) in order to generate a
navigation potential [1]. Each one of these settings possesses its
own, distinct, topological properties [2].  An example is shown
below of an LBVP that is configured using the homogeneous
Neumann boundary conditions: 

      L2V(X)/0 X0S               (1)

subject to:  V(XS) = 1,  V(XT) = 0 , and   at  X = ', ∂
∂
V
n
= 0

where S is the workspace,  ' is its boundary, n is a unit vector
normal to ', Xs is the start point, and XT is the target point.
Harmonic functions have many useful properties [3,4] for
motion planning. Most notably, a harmonic potential is also a
Morse function and a general form of the navigation function
suggested in [5] (see [19]). The HPF approach may be
configured to operate in a model-based and/or sensor-based
mode. It can also be made to accommodate a variety of
differential and state constraints [6]. An HPF planner could be
used to generate the kinematic guidance signal only, or it may
be used to directly generate the navigation control signal for a
holonomic system with second order dynamics [7]. An HPF
may also be realized as a large scale, parallel-distributed
machine with simple, locally-connected processing nodes [17].

This paper contributes a theoretical framework that may be used
for providing a discrete counterpart to the HPF approach. The
framework can serve either as a basis for constructing provably-
correct procedures for synthesizing motion on a weighted graph
or for augmenting the capabilities of existing algorithms of such
a sort. This was demonstrated by suggesting a novel and

efficient algorithm for finding the optimal path on a weighted
graph. The algorithm does not require backtracking, and may be
implemented in-place (as shown in this paper) eliminating the
need for excessive storage. The framework is also used to
suggest a generic solution to the lower bound problem
encountered by the A* algorithm [18]. 

The framework is expected to assist in controlling the growth of
the computational effort experienced by the HPF approach when
planning is to be carried out in high dimensional spaces. Some
researchers used a harmonic potential for biasing  sampling
planners [9,10] for this purpose. While gains in terms of
improving the resolution were achieved, this  may not be needed
since  the HPF approach  has the ability to operate, on its own,
in a sampling mode. An attempt based on Green’s functions was
made in [8] to configure the HPF approach to work in a sample-
based mode; however, several difficulties were encountered.
The most serious ones are: limitation of the approach to working
in  at most six degrees of freedom space, something that is well
within the capabilities of the continuous version of the HPF.
Moreover, the method in [8] is a heuristic method with no
guarantees that if a solution exist it can be found. 
 

The framework is also expected to contribute to the area of
robust data packet transfer in a network of routers. The discrete
HPF paradigm seems to support routing on-the-fly while the
network is still in a transient state. Having the number of routers
and the connectivity structure fixed is a perquisite for the
discrete potential field to converge. This in turns makes it
possible to derive an optimal routing action. Although
optimality is desirable, service availability is a core requirement
that needs to be maintained under abnormal conditions such as
quick change of network connectivity, phasing-in or phasing out
of router nodes. It is demonstrated that if a path to the target
always exist and the switching delays in the routers are
negligible, the packet will reach its destination despite the
changes in the network which may simultaneously take place
while the packet is being routed. This feature enables the
construction of a two-tier motion controller for the network that
consists of a single module capable of switching, in a
transparent manner, between a centralized optimal mode and a
ground-state, decentralized one that become active when the
centralized mode can no longer be sustained.
 

The transition from the continuous, HPF case to the discrete one
is made possible by the strong relation graph theory has to
electrical networks [11,12,13]. It is shown in this paper that a
discrete counterpart of  the BVP in (1) may be established by
replacing the  Laplace operator with the flow balance operator
represented by Krichhoff current law (KCL) [14]. As for the
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boundary conditions, they are applied in the same manner as in
(1) to the boundary vertices.
 

In section II a discrete counterpart to (1)  along with basic
propositions are provided. In section III the M* algorithm is
presented and in IV a lower bound for the A* is proposed.
Section V contains a procedure that is based on the discrete HPF
approach for routing on-the-fly. Conclusions are placed in
section VI. 
  

II. Propositions and definitions
This section provides basic  propositions  and definitions that
are needed  for constructing the minimum path algorithms. 
   

Definition -1: Let G be a non-directed graph containing N
vertices. Let the cost of moving from vertex i to vertex j be Cij
(Cij=Cji). Let a potential Vi be defined at each vertex of the
graph (i=1,..,N), and Iij be the flow from vertex i to vertex j
defined as: 

    ,                                     (2)I
V V

Cij
i j

ij
=

−

where Vi > Vj .Note that equation-2  is analogous to ohm’s law
in electric circuits [14]. Let T and S  be the target and  start
boundary vertices respectively. 
  

A discrete counterpart for the BVP in (1) is obtained if at each
vertex of G (excluding the boundary vertices) the balance
condition represented by KCL is enforced: 

              i=1,..,N,  i …T,  i…SI 0ij
j

=∑
and                VS = 1, VT = 0.                                     (3)
  

Definition-2:  Let the equivalent cost between any two
arbitrarily chosen vertices, i and j, of G (Ceqij) be defined as the
potential difference applied to the i-j port of G ()V) divided by
the flow, I, entering vertex i and leaving vertex j (figure-1)

                              (4)Ceq V
Iij =
∆

Proposition-1:  The equivalent cost of a graph, G, that satisfies
KCL at all of its nodes (i.e. an electric network) as seen from
the i-j port (vertices) is less than or equal to the sum of all the
costs along any forward path connecting vertex i to vertex j.
Note that if the proposition holds for forward paths, it will also
hold for paths with cycles.        
            

        Figure-1: Equivalent cost of a graph as seen from the i-j vertices. 
    

Proof: see [20]. 
  

Proposition-2:  If G satisfies the conditions in equation-3, then
the potential defined on the graph (V(G)) will have a unique
minimum at T (VT) and a unique maximum at S (VS). 
Proof: see [20]. 
  

Proposition-3:  Traversing a positive, outgoing flow from any

vertex in G will generate a sequence of vertices (i.e. a path) that
terminates at T. Vice versa, traversing a negative, ingoing flow
from any vertex in G will generate a sequence of vertices (i.e.
a path) that terminates at S. 
Proof: see [20]  
 
Proposition-4:  A path linking S to T generated by moving from
a vertex to another using a positive flow cannot have repeated
vertices (i.e. it contains no loops). 
Proof: see [20].    

  Definition-3:  Since a positive flow path (PFP) beginning at S
is guaranteed to terminate at T with no repeated vertices in-
between, the combination of all PFPs define a tree with S as the
top parent vertex and bottom, offspring vertices equal to T. This
tree is called the harmonic flow tree (HFT). 
  
Proposition-5:  The HFT of a graph contains all the vertices in
that graph. 
Proof: see [20]
   
Proposition-6:  The HFT of a graph contains the optimal path
linking S to T. 
Proof: see [20]
  
Proposition-7:  The optimum path (or any PFP for that matter)
must contain at most N vertices. 
Proof: see [20].

III. The M* Algorithm
In this section an algorithm (M*) is suggested for computing the
optimum path between S and T on a graph: 
01. Write the KCL equations for each vertex of the graph

           i = 1,...,N                         (5)I 0ij
j

=∑
02. From the KCL equations derive the vertex update equations:

                      (6)V b Vi i,k k
k 1
k i

N

=
=
≠

∑

03. Initialize the variables:
VS=1; VT=0;  Vi=1/2    i=1,..,N   i…S,   i…T            (7)

04. Loop till convergence is achieved performing:

                i=1,..,N, i…S,   i…T               (8)V b Vi i,k k
k 1
k i

N

=
=
≠

∑

05. Compute the flows 
06. Using the flows construct the HFT of the graph
07. Starting from the last parent nodes, for each node retain the
branch with lowest cost and delete the others 
08. Move to the parent nodes one level up and repeat step 7.  
09. Repeat step 8 till the top parent node S is reached
10. The remaining branch connected to S is the optimal path
linking S to T. 

A.  An Example
Consider the weighted graph shown in figure-2. It is required
that a minimum cost path be found from the start vertex S=1 to
the target vertex T=5. The transition costs are: C16=1, C14=3,
C23=4, C34=7, C26=1, C37=5, C35=2, C47=6, C67=9, C57=5. The  
update equations are:



                                     (9)V 1
K

[ V
C

V
C

] = b V b V1
1

4

14

6

16
1,4 4 1,6 6= + +

V 1
K

[ V
C

V
C

] b V b V2
2

3

23

6

26
2,3 3 2,6 6= + = +

V 1
K

[ V
C

V
C

V
C

V
C

] = b V b V b V b V3
3

2

23

4

34

5

35

7

37
3,2 2 3,4 4 3,5 5 3,7 7= + + + + + +

V 1
K

[ V
C

V
C

V
C

] b V b V b V4
4

1

14

3

34

7

47
4,1 1 4,3 3 4,7 7= + + = + +

V 1
K

[ V
C

V
C

] b V b V5
5

3

35

7

57
5,3 3 5,7 7= + = +

V 1
K

[ V
C

V
C

V
C

] b V b V b V6
6

1

1,6

2

2,6

7

6,7
6,1 1 6,2 2 6,7 7= + + = + +

, V 1
K

[ V
C

V
C

V
C

V
C

] = b V b V b V b V7
7

3

37

4

47

5

57

6

67
7,3 3 7,4 4 7,5 5 7,6 6= + + + + + +

where 
             1

K
1

C
1

C
]

1 14 16
= +[ 1

K
1

C
1

C2 23 26
= +[ ]

1
K

1
C

1
C

1
C

1
C

]
3 23 34 35 37
= + + +[ 1

K
1

C
1

C
1

C
]

4 14 34 47
= + +[

           , 1
K

1
C

1
C5 35 57

= +[ ] 1
K

V
C

V
C

V
C6

1

16

2

26

7

67
= + +[ ] 1

K
1

C
1

C
1

C
1

C
]

7 37 47 57 67
= + + +[

Setting V1=1, V5=0  and applying the procedure described
above we obtain the vertices potential: V1=1, V2=0.74673,
V3=0.33753, V4=0.70006, V5=0,   V6=0.84902,  V7=0.41093 . The flows
may be computed as (figure-4): I14=0.09998,  I16=0.15098, I23=0.1023,
I47=0.048189, I43=0.05179, I35=0.16877, I62=0.1023, I67=0.048677, I73=0.014679,
I75=0.082186 

As can be seen (figure-4) the optimum path: 56 3626661 with
a cost 8 was obtained after only two levels of branch removal.
                

                             Figure-2: The graph and the flows. 
Now construct the corresponding HFT (figure-3). 

                

          Figure-3: The HFT. 
Start successively removing branches (figure-4): 
                

  Figure-4a: Level-1 parent node branch removal. 
              

 Figure-4b: Level-2 parent node branch removal.

 Figure-4c: Level-3 parent node branch removal .
   
B. A successive relaxation procedure for implementing  M*
The rapid growth of an HFT with the size of a graph makes it
impractical to apply the algorithm on the tree directly. Here a
procedure that makes it possible to operate on the HFT
indirectly by successively relaxing the graph. In order to apply
the procedure the following terms need to be defined (figure-5):
positive flow index (PFI) of a vertex: number of edges
connected to the vertex with outward positive flows. Negative
flow index (NFI) of a vertex: is the number of edges connected
to the vertex with inward negative flows. 
               

                         Figure-5: PFI and NFI of a vertex. 
The procedure is: 
0-compute the PFI and NFI for each vertex of the graph,
1-starting from the target vertex and using the negative flows
along with the NFIs and PFIs of the vertices, detect the junction
vertices and label them based on their levels,
2- at the encountered junction vertex clear NB buffers where
NB=PFI of the junction vertex, 
3- now starting from the junction vertex, trace forward all paths
to the target vertex traversing vertices with positive flows and
PFIs=1, 
4- excluding the lowest cost path, delete all the edges in the
graph connecting the junction vertex to the first, subsequent
vertices in the remaining paths, 
5- decrement the PFI of the junction vertex by the number of
edges removed from the graph, 
6- decrement the NFIs of the first subsequent vertices from step
4 by 1, 
7- if the NFI of any vertex in the graph  from step 4 is  equal
zero and the vertex is not a start vertex, delete the edge in the
graph connecting that vertex to the subsequent vertex and
reduce the NFI of the subsequent vertex by 1, 
8- repeat 7 till all the reaming vertices in the paths with PFIs=1
have NFIs >0, 
9- go to 1 and repeat till there is only one branch left in the
graph with two terminal vertices having NFI=0, PFI=1 and
NFI=1, PFI=0. This is the optimum path connecting the start
vertex to the target vertex. 

In the following the procedure is applied to the graph in figure-2
 in a step by step manner (figure-6): 



    

initially traced path: 567
constructed paths: 765         cost=5

76365    cost=5+2=7  (eliminate edge 763 in graph)

     

initially traced path: 5636266
constructed paths: 66765    cost=9+5=14 (eliminate edge 667 in graph) 

6626365   cost=1+4+2=7 

      

initially traced path: 56764
constructed paths: 46765  cost=6+5=11 (eliminate edge 467 in graph)

46365  cost=7+2=9 

    

Vertex 7  NFI=0,  not a start vertex     (Eliminate edge 765 in graph)

     

initially traced path: 563626661 
constructed paths:1646365    cost= 3+7+2=12 (eliminate edge 164 in graph)

            166626365   cost=1+1+4+2=8 

       

Vertex 4 has an NFI=0 and is not a start vertex      (eliminate edge 4 6 3)

      

All intermediate vertices have an NFI=PFI=1  6 Algorithm terminates.
                        Figure-6: successive relaxation for the M*

The optimum path is: 166626365 having a cost of 8. 

IV. A Lower bound for A*
For the A* algorithm to work  a lower bound on the cost from
each vertex of the graph to the target vertex has to be supplied.
For spatial planning problems the Euclidian distance between
the vertices provides such a bound. However, for the general
case finding a lower bound may be a source of difficulties that
prevents the use of the A* algorithm. In the followings it is
shown that the concept of equivalent cost (resistance) from the
resistive network paradigm can effectively solve this problem.
       
Consider the simple graph in figure-7 where S=1 and T=4. To
apply the A* algorithm, the path at node 1 should be expanded
towards 2 and 3. In order to sort the paths so that the next path
expansion can be determined, lower estimates on the cost of
moving from 2 to 4 and 3 to 4 are needed. Expansion of the path
towards 2 may be achieved by simply removing all the edges of
the graph that are attached to 1 leaving only the edge connected
to vertex 2 (figure-7).  The flows are then computed for the
remaining part of the network. The equivalent cost from 2 to 4
(Ceq24) may be computed as: 

                         (10)Ceq 1
I

C .24
12

12= −

Since in proposition-1 it is proven that the equivalent cost
between two vertices in a graph is less than or equal to the least
cost path connecting these vertices, the equivalent cost may be
used as the lower bound estimate required by the A* algorithm.
The minimum cost bounds needed for the remaining path
expansions may be obtained in a similar manner. 
  
A. Example: 
The same example in the previous section is repeated using the
A* algorithm and the equivalent cost concept.  The successive
path expansions are shown in figure-7. The optimum path is:
166626365 having a cost of 8. 

           

                               Figure-7: Path expansion  



          

          

           

     

                 Figure-8: A* applied to the graph in figure-4. 

V. Routing on-the-fly
In the previous sections optimal algorithms for planning motion
on a weighted graph utilizing the flow in a resistive grid are
suggested. In order to apply these algorithms the graph must
have a fixed structure known to the central unit that is
processing the data and generating the path. While the above
setting applies in many practical situations there are cases where
such a scenario cannot be applied, e.g. ad-hoc networks. Also,
reliability and cost issues may make it undesirable to have the
whole process hinge on the success of a single, central agent.
The alternative is to execute the routing process in an
asynchronous, decentralized, self-organizing manner. In this
case each vertex of the graph is assumed to be a router with
limited sensing, processing and decision making capabilities
where the immediate domains of awareness and action of a
router are limited to a subset of the network with the remaining
part being transparent to the router concerned. In other words,
the router should sense locally, reason locally, and act locally
yet produce global results (figure-9).

In a centralized mode, the routers keep exchanging states till
convergence is achieved. The potential is then communicated to
a central agent which in a single shot lays a path to the target
(figure-10). In a decentralized mode, communication of states

between routers need not necessarily be sustained till a steady
state is reached. Instead, during communication among the
routers, whenever possible, the router with the packet attempt
to pass it to a neighboring router using a simple, local, potential-
based procedure that can be easily implemented on-board a
router. As can be seen, under ideal situation, in a discrete HPF
paradigm,  the decentralized mode reduces to the centralized
one.
                  

               Figure-9: decentralized routing. 

Centralized mode

Decentralized mode
Figure-10: centralized and decentralized mode in a discrete HPF paradigm. 

The following is one of the decentralized procedures that may
be derived from this paradigm: 

0- fix the potential at the target vertex to zero, 
1- each router establishes connectivity with selected
neighboring routers and assigns appropriate costs, 
2- fix the potential at the router that currently hold the data
packet to 1, 
3- excluding the routers with the packet and the target router,
each router should update its potential using equation (18), 
4- forward the packet from the current router to the associated
router with highest positive flow, 
5- if the router is not the target router go to 1, 
6- target router is reached. 

The procedure is simulated for the graph in figure-2. The
potential field was initially set using a random number generator
that is uniformly distributed between (0,1). The output of the
process is the path: 1 6 6 6 2 6 3 6 5 having the cost 8. 

To test the robustness of the procedure the example is repeated
while inducing, at each hop, a malfunction in a randomly
selected router (excluding the target router and the one currently



holding the packet). In the following the vertex number as a
function of the  hop number is shown for one of the trials
(figure-11). As can be seen the packet finally converges to the
target vertex. Convergence was observed for all the trials that
were carried out. 

  

Figure-11: vertex number vs hop number under random router malfunction. 

The number of hops needed for the packet to reach the target
vertex as a function of the trial number is shown in figure-12
and the corresponding histogram is shown in figure-13. 

     Figure-12: convergence hop umber versus trial number

        Figure-13: the histogram of figure-12.
VI. Conclusions

In this paper the capability of the harmonic potential field
approach to operate in a discrete, sample-based mode is
demonstrated. It is shown that a  modified,  provably-correct,
optimal, discrete planning action can be derived using the edge
flows obtained from a discrete potential field that is made to 

satisfy the flow balance conditions represented by Kirchhoff
current law while marking the start vertex as a flow source and
the target vertex as a drain. 
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