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A Novel Type of

Nonlinear, Passive

Damping Forces

and Advantages

BY AHMAD A. MASOUD

T
his article extends the capabilities of the harmonic
potential field (HPF) approach to planning to cover
both the kinematic and dynamic aspects of a robot’s
motion. The suggested approach converts the
gradient guidance field from a harmonic potential

to a control signal by augmenting it with a novel type of damp-
ing forces called nonlinear, anisotropic, damping forces
(NADFs). The combination of the two provides a signal that
can both guide a robot and effectively manage its dynamics.
The kinodynamic planning signal inherits the guidance capa-
bilities of the harmonic gradient field. It can also be easily con-
figured to efficiently suppress the inertia-induced transients in
the robot’s trajectory without compromising the speed of

operation. The approach works with dissipative systems as well
as systems acted on by external forces without needing the full
knowledge of the system’s dynamics. Theoretical develop-
ments and simulation results are provided in this article.

The HPF approach to planning is emerging as a powerful
paradigm for the guidance of autonomous agents. Since it was
suggested in the mid-late 1980s [1], [2], the approach is con-
tinuously being developed to meet the stringent requirements
operation in a real-life environment imposes on an agent.
Until now, the approach has amassed many attractive proper-
ties crucial for enhancing goal reachability. The approach is
provably correct, driving the agent to a successful conclusion if
the task is manageable and providing an indication if the task is
intractable. It can be used to guide the motion of an arbitrarily
shaped agent in an unknown environment regardless of itsDigital Object Identifier 10.1109/MRA.2010.935794
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geometry or topology, relying only on the sensory data
acquired online by the agent’s finite-range sensors. The
method can also impose a variety of constraints on the agent’s
trajectory such as regional avoidance and directional con-
straints [3]–[8]. Harmonic functions are also Morse functions
and a general form of the navigation functions suggested in
[13] (see ‘‘Navigation Functions’’).

A planner may be defined as an intelligent, purposive, con-
text-sensitive controller that can instruct an agent on how to
deploy its motion actuators (i.e., generate a control signal) so
that a target state may be reached in a constrained manner.
Traditionally, a planning task is distributed at two stages: a
high-level control (HLC) and a low-level control (LLC). The
HLC stage receives data about the environment, the target of
the agent, and constraints on its behavior. It then simultane-
ously processes these data to generate a reference plan or
trajectory marking the desired behavior of the robot. This
trajectory, if actualized, leads to the agent reaching its target in
the specified manner. The reference trajectory is then fed to an
LLC to convert it into a sequence of action instructions to be
executed by the agent’s actuators of motion. Unfortunately,
the HLC-LLC paradigm for planning suffers from serious
problems that adversely impact its performance in a realistic
setting. An alternative may be achieved by fusing the HLC and
LLC modules into one called the navigation control. A naviga-
tion control attempts to directly convert the environmental
data, goal of the robot, and constraints on its behavior into a
control signal. Khatib potential field approach may be consid-
ered as one of the first methods to cast planning in a navigation
control framework [9]. The potential field approach enjoys
several attractive features: most significant is the high speed by
which a robot can respond to the contents of its environment.

The attractor–repeller setting that is used to generate the
potential field has some problems. The most serious one has to
do with convergence, where it was observed that a robot guided
by such a method may stop somewhere in the workspace before
reaching its target; the problem was termed the local minima
problem. Many methods were proposed to generate potential
fields that do not suffer from this problem [10]–[12]. Koditschek
diffeomorphism approach [13] was among the first methods
suggested as a remedy to this shortcoming. To convert the gradi-
ent guidance field from the potential surface (�rV ) into a con-
trol signal (u), Koditschek and Rimon suggested that the
gradient guidance field can be augmented with a viscous damp-
ening force that is linearly proportional to speed [14]:

u ¼ �b � _x�rV (x): (1)

According to [14], this combination will only work pro-
vided that the initial speed of the robot at each point in space

(x(x)) is lower than an upper bound S(x):

x(x) � S(x) x 2 X, (2)

where X is the workspace of the robot. Practical application of
the earlier faced two difficulties: first, no method was provided
to compute the upper bound S. Even if a method is devised for
doing so, there is no guarantee that, in a practical situation, the
initial speed of a robot can be made to lie below the admissible
upper bound. The second difficulty has to do with the fact that
the satisfaction of the upper speed constraint guarantees only
that obstacle avoidance constraints will be upheld and conver-
gence to the target will be achieved. In potential field methods,
transients can be a serious concern that could make it impracti-
cal to use these techniques for controlling a robot. Also, the
approach seems to deal only with dissipative systems where no
mention of how the method may be applied when external
forces such as gravity are present.

In its current form, the HPF approach can only operate in
an HLC mode providing only a guidance signal from the
gradient of the potential. This signal has to be converted into a
control signal by an LLC. Guldner and Utkin suggested an
interesting approach based on a sliding-mode (SM) control for
converting the gradient field from an HPF into a control signal
[21]. The approach is robust, has good convergence properties,
does not require full knowledge of system dynamics, and can
make, with little transients, the dynamic trajectory of the robot
follow the kinematic trajectory marked by the gradient field.
The main drawback of the approach seems to be the high chat-
tering that the control signal experiences.

It is shown that an NADF-based control can efficiently sup-
press inertia-induced artifacts in the dynamical trajectory of
the system, making it closely follow the kinematic trajectory
while maintaining an agile system response. The approach
does not require the system dynamics to be fully known. A
loose upper bound is sufficient for constructing a well-behaved
control signal that can deal with dissipative systems as well as
systems being influenced by external forces (e.g., gravity). An
earlier version of this work may be found in [32].

This article is organized as follows: The ‘‘Background’’ pro-
vides a brief background of the potential field approach. An
intuitive solution for converting a gradient guidance filed into
a navigation control signal is presented in the ‘‘The NADF
Approach’’ section. The ‘‘Dissipative Systems’’ and ‘‘Systems
with External Forces’’ sections discuss the application of the
approach to dissipative systems and systems experiencing
external forces, respectively. Simulation results are presented in
the ‘‘Results’’ section and the last section draws the conclusion.

Background
The HPF approach appeared shortly after the work of Khatib.
Although the approach was brought to the forefront of motion
planning independently and simultaneously by different
researchers [16]–[20], the first work to be published on the
subject was that by Sato in 1987 [1]. The HPF approach elimi-
nates the local minima problem encountered in [9] by forcing
the differential properties of the potential field to satisfy the

The HPF approach to planning is

emerging as a powerful paradigm

for the guidance of autonomous

agents.
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Navigation Functions

Definition: Let V(x) be a smooth (at least twice differen-

tiable) scalar function [V(x): RN fi R]. A point xo is

called a critical point of V if the gradient vanishes at that

point (rV(xo) = 0); otherwise, xo is regular. A critical point

is Morse, if its Hessian matrix (H(xo)) is nonsingular. V(x) is

Morse, if all of its critical points are Morse [24].

Proposition: If V(x) is a harmonic function defined in an

N-dimensional space (RN) on an open set X, then the Hes-

sian matrix at every critical point of V is nonsingular, i.e., V
is Morse.

Proof: There are two properties of harmonic functions that

are used in the proof.

1) A harmonic function (V(x)) defined on an open set X
contains no maxima or minima, local or global in X.

An extrema of V(x) can only occur at the boundary

of X.

2) If V(x) is constant in any open subset of X, then it is

constant for all X. Other properties of harmonic

functions may be found in [26].

Let xo be a critical point of V(x) inside X. Since no max-

ima or minima of V exist inside X, xo has to be a saddle
point. Let V(x) be represented in the neighborhood of xo

using a second-order Taylor series expansion:

V (x) ¼ V (xo)þrV (xo)T (x�xo)þ 1

2
(x � xo)T H(xo)(x � xo)

kx � xok � 1: (A1)

Since xo is a critical point of V, we have

V 0 ¼ V (x)� V (xo) ¼ 1

2
(x � xo)T H(xo)(x � xo)

kx � xok � 1: (A2)

Note that adding or subtracting a constant from a har-

monic function yields another harmonic function, i.e., V 0

is also harmonic. Using eigenvalue decomposition [25]:

V 0 ¼ 1

2
(x � xo)TUT

k1 0 0 0

0 k2 : 0

: : � :

0 0 : kN

2
6664

3
7775U(x � xo)

¼ 1

2
nT

k1 0 0 0

0 k2 : 0

: : � :

0 0 : kN

2
6664

3
7775n ¼ 1

2

XN

i¼1

kin
2
i , (A3)

where U is an orthonormal matrix of eigenvectors, ks are the

eigenvalues of H(xo), and n = [n1 n2 . . . n
N
]
T

= U (x� xo). Since

V 0 is harmonic, it cannot be zero on any open subset X; oth-

erwise, it will be zero for all X, which is not the case. This can

only be true if and only if all the ki’s are nonzero. In other

words, the Hessian of V at a critical point xo is nonsingular.
This makes the harmonic function V also a Morse function.

Computing the Normal Component
Constructing an NADF force requires that the component

of motion normal to �rV be computed. Explicit computa-

tion of such component requires that N � 1 set of basis

vectors fully spanning the normal space be constructed.
Although explicitly constructing such basis in RN is possible,

it is desirable that the normal component of motion be

computed using an indirect approach that relies only on

�rV. This may be carried out using the following steps:

1) compute the component of motion in-phase with

�rV (xr)

xr ¼ _xT �rV (x)

rV (x)k k , (A4)

2) remove the in-phase component from _X creating

the vector

xn ¼ _x � xr �
�rV (x)

rV (x)k k , (A5)

3) normalize xn to obtain the normal vector l:

l ¼ xn

xnk k
, (A6)

4) the orthogonal component may now be computed as

_xTl
�� ��l: (A7)

The following example demonstrates that the afore-
mentioned process is equivalent to the direct procedure.

At a certain point in space, let �rV ¼ ½1=
ffiffiffi
2
p

1=
ffiffiffi
2
p
�T ,

n ¼ ½�1=
ffiffiffi
2
p

1=
ffiffiffi
2
p
�T , and _x = [0.6 �1]T. Using the direct

procedure, the normal component is

( _xT n)�n ¼ ½0:2 �0:2�T : (A8)

Using the indirect procedure, we have

xr ¼ _xT (�rV ) ¼ �0:28284, (A9)

xn ¼ _x � xr � A(�rV ) ¼ ½0:8 �0:8�T , (A10)

normalizing xn
, we have

l ¼ ½1=p2 �1=
p

2�T : (A11)

The orthogonal component of motion is

j _xT
lj � l ¼ ½0:2 �0:2�T : (A12)

The answer is the same as the one from the direct
approach.
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Laplace equation inside the workspace of the robot (X) while
constraining the properties of the potential at the boundary of
X (C¼ qX). The boundary set C includes both the boundaries
of the forbidden zones (O) and the target point (xT). A basic
setting of the HPF approach is:

r2V (x) � 0 x 2 X,

subject to: Vi ¼ 0jX¼Ci
and Vi ¼ 1jX2C0i : (3)

The trajectory to the target (x(t)) is generated using the
HPF-based, gradient dynamical system:

_x ¼ �rV (x) x(0) ¼ x0 2 X: (4)

The trajectory is guaranteed to:

lim
t!1

x(t)! xT x(t) 2 X 8t, (5)

whereby a proof of (5) may be found in [3]. Figure 1 shows the
negative gradient field of a harmonic potential and the trajec-
tory, x(t), generated using the gradient dynamical system in (4)
for the simple environment of a room with two dividers. The
HPF approach is only a special case of a broader class of plan-
ners called partial differential equation–ordinary differential
equation (PDE-ODE) motion planners [5] where the field is
generated using the boundary value problem:

solve: L(V (x)) � 0 x 2 X,

subject to: W(V (x)) ¼ 0 x 2 C: (6)

The trajectory is generated using the nonlinear system:

_x ¼ F(V (x)) x(0) ¼ x0 2 X, (7)

where L is scalar partial differential operator, W is a governing
relation restricting the potential or some of its properties at the
boundary to a certain value, F is a nonlinear vector function
mapping R fi RN, N is the dimension of x. Planners assuming
a PDE-ODE setting other than that of the one in (3) may be
found in [3], [7], and [8].

The trajectory, x(t), generated by the dynamical system in
(4) is only a reference trajectory that should be fed to an LLC
to generate the control signal u. One way of converting the
guidance signal into a control signal is to augment the gradient
field with a component that is proportional to speed. This
seemingly straightforward solution is problematic. In Figure 2,
the negative gradient of the potential in Figure 1 is used to nav-
igate a 1-kg point mass. The system equation is

€x

€y

� �
¼ �b �

_x

_y

� �
�

@ v(x, y)=@ x

@ v(x, y)=@ y

� �
, (8)

where b = 0.1. Despite the initial speed being zero, the
trajectory violated the avoidance condition and collided
with the wall.

The NADF Approach
An intuitive solution for converting a gradient guidance field
into a navigation control signal is to increase the coefficient
of the linear velocity term to a sufficiently high level. The
linear velocity component acts as a dampener of motion that
may be used to place the inertial force under control by mar-
ginalizing its disruptive influence on the trajectory of the
robot that the gradient field is attempting to generate. The
following example demonstrates that this solution is
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Figure 1. Guidance field and generated trajectory of an HPF.
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Figure 2. Trajectory generated by the field in Figure 1.

After motion is trapped by the

clamping control, an iterative

procedure is suggested for totally

canceling the error.
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impractical. To generate a control signal that would satisfy
the avoidance constraints (5), the coefficient of damping of
the system is increased to b = 0.15. The resulting trajectory
and the distance to the target as a function of time are shown
in Figures 3 and 4, respectively. Although the trajectory did
converge to the target point (xT) and did not violate the
regional avoidance constraints, unacceptable transients along
with significant deviations from the path marked by the
gradient field (Figure 1) are present. In a second attempt to
generate a well-behaved control signal, the dampening coef-
ficient is significantly increased to b ¼ 0.7. Although a well-
behaved trajectory was obtained (Figure 5), significant slow-
down of motion did occur (Figure 6).

The method for converting the gradient field from a har-
monic potential into a navigation control signal by simple
augmentation with a linear velocity damping term is incorrect.
This approach ignores the dual role that the gradient field acts
as a control and guidance provider. This field guides a robot to
the target using vectors that point out the directions along
which the robot has to move if the target is to be reached and
the obstacles are to be avoided. At the same time, these vectors
are forces that act on the mass of the robot to actuate motion.
The inertia of the robot will have a disruptive influence on
motion. The linear damping term manages the inertial forces
in an attempt to make the motion yield to the guidance pro-
vided by the gradient field. A damping component that is pro-
portional to velocity exercises omnidirectional attenuation
of motion regardless of the direction along which it is heading.
This means that the useful component of motion marked by the
direction along which the goal component of the gradient of
the potential is pointing is treated in the same manner as the
unwanted inertia-induced component of the trajectory. These
two components should not be treated equally. Attenuation
should be restricted to the inertia-caused disruptive
component of motion, while the component in conformity
with the guidance of the artificial potential should be left unaf-
fected (Figure 7).

To manage the effect of the inertial forces better, a damping
component that treats the gradient of the artificial potential
both as an actuator of dynamics and as a guiding signal is
needed. A damping force (h) that behaves in the aforemen-
tioned manner is

h(x, _x)¼ (nt _xnþ rV (x)T

rV (x)k k � _x �U(rV (x)T _x)

� �
rV (x)

rV (x)k k

� �
,

(9)

where n is a unit vector orthogonal to rV and U is the unit
step function. This force is given the name NADF. For the
two-dimensional case, an NADF has the form:

h ¼ 1

g2
x þ g2

y

"
( gx _y� gy _x) �

�gy

gx

" #
þ (gx _xþ gy _y)

� U(� gx _x� gy _y)
gx

gy

#" #
, (10)
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Figure 4. Distance to target versus time (b ¼ 0.15).
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Figure 5. Trajectory, high-linear damping.
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Figure 3. Trajectory, point mass, and linear damping increased.
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whererV (x, y) ¼ ½ gx gy�T . A procedure for computing the
component of motion normal to �rV in RN is in ‘‘Comput-
ing the Normal Component.’’

Dissipative Systems
In this section, two propositions are stated and proven. The first
proposition shows that a gradient field of a harmonic potential
generated by the boundary value problem in (3) combined
with NADF can guarantee global, asymptotic convergence of a

fully actuated second-order dissipative dynamical system. The
second shows that the dynamic trajectory of the system can be
made arbitrarily close to the kinematic trajectory generated by
the system in (4), hence, preserving the spatial constraints.

Proposition 1

Let V(x) be a harmonic potential generated using the
boundary value problem in (3). The trajectory of the dynami-
cal system:

D(x)€xþ C(x, _x) _x ¼ u,

u ¼ �bd � h(x, _x)� k � rV (x), (11)

will globally, asymptotically converge to

lim
t!1

x
_x

� �
! xT

0

� �
, (12)

for any positive constants bd and k, where x 2 RN, V(x):
RNfiR, D(x) is an N 3 N positive definite inertia matrix,
C(x, _x) _x contains the centripetal, Coriolis, and gyroscopic
forces. Proof of the earlier proposition is carried out using the
LaSalle principle [23].

Proof: Let N be the Liapunov function candidate:

N(x, _x) ¼ k � V (x)þ 1

2
_xT D(x) _x: (13)

Note that as V(x) is harmonic, it must assume its maxima
on C and minima on xT. In other words, V(x) can only be zero
at xT; otherwise, its value is greater than zero:

N(x, _x) ¼
�

0 if x ¼ xT , _x ¼ 0
positive otherwise:

(14)

The time derivative of the earlier function is

_N(x, _x) ¼ k � rV (x)T _xþ 1

2
_xT _D(x) _xþ _xT D(x)€x: (15)

Substituting

€x ¼ D�1(x)½�C(x, _x) _x� bd � h(x, _x)� k � rV (x)�, (16)

along with (9) in the earlier equation yields

_N ¼ k � rV (x)T _xþ 1

2
_xT _D(x) _x

�k � rV (x)T _x� _xT C(x, _x) _x

�bd � _xT (nT _x)n

�bd � _xT rV (x)T

rV (x)j j � _x � U(�rV (x)T _x)

� �
rV (x)

rV (x)j j : (17)

Using the passivity property:

_xT ( _D(x)� 2 � C(x, _x)) _x ¼ 0, (18)
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Figure 7. Nonlinear, anisotropic, damping force (NADF).
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Figure 6. Distance to target versus time (b ¼ 0.7).
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and rearranging the terms, we get

_N ¼ �bd � (nT _x)T (nT _x)

�bd �
(rV (x)T � _x)T

rV (x)j j � (rV (x)T � _x)

rV (x)j j � U(rV (x)T _x), (19)

as can be seen

_N � 0 8 x, _x, (20)

where

_N ¼ 0 for 8x 2 X, _x ¼ 0,

according to LaSalle principle any bounded solution of (11)
will converge to the minimum invariant set:

E � f _x ¼ 0, xg: (21)

Determining E requires studying the critical points of V(x).
According to the maximum principle, xT is the only minimum
(stable equilibrium point) V(x) can have. Besides xT, V(x) has a
finite number of isolated critical points {xi} at which rV ¼ 0;
however, the Hessian at these points is nonsingular, i.e., V(x) is
Morse [24]. A proof of this result may be found in ‘‘Navigation
Functions.’’ It is concluded that E contains only one point,
x ¼ xT , _x ¼ 0, to which motion will converge. A proof based on
Liapunov theory showing that, for the kinematic case, �rV(x)
can drive motion from anywhere in X to xT may be found in [3].

Proposition 2

Let q be the trajectory constructed as the spatial projection of
the solution, x(t), of the first-order differential system in (4).
Also, let qd be the trajectory constructed as the spatial projection
of the solution, x(t), of the second-order system in (11) (Figure
8). Then there exist a bd that can make the maximum deviation
(dm) between q and qd arbitrarily small.

Proof: The gradient field from an HPF does not only work as a
guide of motion to the target but also be used to cover X with
a complete set of boundary-fitted basis [4] coordinates.

The radial basis of the system (DV/jDV j) marks the useful
component of motion. The basis orthogonal to this compo-
nent spans the instantaneous deviation between q and qd(d),
which NADF is required to attenuate (Figure 9).

The dynamic equation describing the disruptive component is

nTD(x)€xþ nTC(x, _x) _xþ bd � nTh(x, _x)þ k � nTrV (x) ¼ 0:

(22)

Examining the earlier equation term by term yields
1) nTrV ¼ 0; (23)

2) nT

"
(nt _x)nþ rV (x)T

rV (x)T
�� �� � _x � U(rV (x)T _x)

 !
,

rV (x)

rV (x)j j

#
¼ (nt _x)

3) assuming a stable and nonimpulsive system, an upper
bound can be placed on the speed:

_xj j � mmax, (24)

Therefore, the norm of the matrix C may be bound as:

C(x, _x)k k � cmax, (25)

4) any inertia matrix belonging to a physical system is
positive definite, invertible, and have a bounded norm:

D(x)k k � dmax, (26)

where dmax, cmax, and mmax are finite, positive constants. A
dynamic equation that yields an upper bound on d is

dmax � nT €x� cmaxn
T _xþ bd � nT _x ¼ 0, (27)

or

€dþ D � _d ¼ 0,

where

€d ¼ nT €x, _d ¼ nT _x, and D ¼ bd � cmax

dmax
:

To determine the effect of the disruptive time component
(n(t)) that acts normal to rV, the impulse response (z(t)) of
(27) is obtained:

z(t) ¼ 1

D
(1� e�D�t)U(t) ¼ z(t)

D
: (28)

X0

XT

δm

ρd

ρ

n

∇V(x)

|∇V(x)|

Figure 8. The kinematic and dynamic trajectories.
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n
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Figure 9. The disruptive component of motion.
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The deviation as a function of time may be computed as

d(t) ¼ n(t) � z(t),

where � denotes the convolution operation. As shown in
Proposition 1 that motion will converge to xT and all dynamic
terms will tend to zero, n(t) may be bounded as

Z 1
0

n(t)j jdt � I , (29)

therefore

d(t) ¼ 1
D

z(t) � n(t) � Imax

D
,

where I and Imax are positive constants. By properly selecting a
value for D, the maximum deviation dm can be made arbitrarily
small. In other words, the dynamic trajectory of (11) will closely
follow the kinematic trajectory of (4), and the spatial constraints
will be preserved. Since NADF is by design made to be zero
when motion is in accordance with the guidance field rV, bd

can be made arbitrarily large without slowing down the system.
This fact is clearly reflected by the simulation results (Figure 10 ).

Systems with External Forces
The NADF approach may be adapted for designing con-
strained motion controller for mechanical systems experienc-
ing external forces (e.g., gravity). The dynamical equation of
such systems has the form

D(x)€xþ C(x, _x) _xþ g(x) ¼ F, (30)

where g(x) and F are vectors containing the external forces and
the applied control forces, respectively. A controller consisting
of the gradient guidance field and a strong enough NADF (31)
has the ability to make the trajectory of the system in (30)
closely follow the kinematic trajectory from an initial starting
point (xo) to the target point xT ,

F ¼ �bd � h(x, _x)� k � rV (x): (31)

However, because of the presence of the external forces,
the controller will not be able to hold the state close to the tar-
get point and drift will occur (Figure 11). Arimoto and Miya-
zaki showed that steady-state error caused by the external
forces may be canceled by using an integral control action [27].
Unfortunately, an integral action raises the order of the
mechanical system and could cause it to become unstable if it
is not tuned properly. The integrator also induces a difficult to
manage transients in the system response.

Here an alternative approach to using an integrator is sug-
gested. The suggested approach does not endanger stability
and can cancel the error caused by the external forces bringing
the dynamic trajectory arbitrarily close to the target point. The
approach capitulates on the ability of the controller in (31) to
drive motion arbitrarily close to the target point. Once the
trajectory is close to the target, a passive clamping control
action is activated to trap the trajectory in a set close to the tar-
get. After motion is trapped by the clamping control, an itera-
tive procedure is suggested for totally canceling the error. In
the following, the suggested clamping control is described.

Clamping Control
The effect of the clamping control (Fc) is strictly localized to a
hypersphere of constant radius r surrounding the target point.
If motion is heading toward the target, this control component
is inactive. On the other hand, if motion starts heading away
from the target, the control becomes active and attempts to
drive the trajectory back to the target (Figure 12).

A clamping control that behaves in the earlier manner is:

FC(x, _x) ¼ (x� xT ) � U(r� x� xTj j) � U( _xT (x� xT )):

(32)
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The strength of Fc is adjusted by multiplying it with a con-
stant kc, so that the steady-state error is kept below a desired level
(e). Unlike the integrator, the use of a clamping control will
keep the mechanical system stable for any positive value of kc.

Proposition 3

For the mechanical system in (30), a controller of the form

F ¼ �bd � h(x, _x)� k � rV (x)� kC � FC( _x, x), (33)

can make

lim
t!1

x(t)� xTj j � e < r,

and

lim
t!1

_x ¼ 0, (34)

provided that:
1) k, bd, and kc are all positive,
2) kc 	 Fmax=e

Fmax ¼ max
x
jg(x)j x 2 Xr,

and

Xr ¼ fx : x� xTj j � rg, (35)

3) a high enough value of bd is selected so that at some
instant in time t0

x(t0)� xTj j < r, (36)

4) k is high enough so that the gradient field is capable of
directing the trajectory to Xr

k � rV (x)j j > gT (x)
rV (x)

rV (x)j j

����
���� x 2 X� Xr: (37)

Proof: Consider a Liapunov function candidate similar to the
one in (13) with a gravitational potential energy term (P(x))
added:

N(x, _x) ¼ k � V (x)þ 1

2
_xT D(x) _xþ P(x), (38)

note that:

g(x) ¼ �rP(x) and P(x) ¼
Zx

x0

g(z)dz: (39)

Differentiating (38) with respect to time, we get:

_N(x, _x) ¼ k � rV (x)T _xþ 1

2
_xT _D(x) _xþ _xT D(x)€xþ _xT g(x),

(40)

solving for €x from (30) and (31) and substituting the results in
(40) we get:

_N¼�bd � (nT _x)T (nT _x)

�bd �
(rV (x)T � _x)T

rV (x)j j � (rV (x)T � _x)

rV (x)j j �U(rV (x)T _x)

�kC � _xT (x� xT ) �U( _xT (x� xT )) �U(r� x� xTj j): (41)

As kc and bd are positive we have:

_N � 0 8x, _x, where

_N ¼ 0 for 8x, _x ¼ 0: (42)

Since we are assuming that k and bd are selected high enough
so that the dynamic trajectory will follow the kinematic trajec-
tory and enter Xr, the minimum invariant set to which the
trajectory is going to converge may be computed from:

g(x)þ k � rV (x)þ kC � FC(x, _x ¼ 0) ¼ 0: (43)

Since U(0) ¼ 1, and x 2 Xr [i.e., U(r�jx�xTj) ¼ 1), (43)
becomes:

g(x)þ k � rV (x)þ kC � (x� xT ) ¼ 0: (44)

If condition 2 on kC is satisfied, the solution of the earlier
equation has to lie in the set Xe¼ {x : jx�xTj<e}. This means
that the deviation of the end of the dynamic trajectory from
the target point should at most be e.

Another alternative to the use of integration is to reduce
steady-state error by increasing the gain of the gradient field (k)
to a sufficiently high level. This approach makes the transient
difficult to manage and increases the control effort. On the
other hand, selecting a high gain of the clamping control (kC)
to manage the steady-state error will not cause the earlier prob-
lems. This is because this control component is designed to be
minimally intrusive affecting the system only when it is needed.
This is clearly demonstrated by simulation (Figures 13 and 14).

Iterative, Blind-Error Cancelation
Although clamping control has the ability to reduce the
steady-state error to an arbitrarily small value, sometimes it is
desired that this error be totally canceled. Here, an iterative,
blind procedure is suggested for error cancelation. The proce-
dure works by providing an alternative path (b) other than the
error channel (KPÆe, where KP is a positive definite matrix) to

kc  · (XT  – X)

X
· T

(XT  – X ) ≤ 0
Force = kc  (XT  – X )

X
· T

(XT  – X ) > 0
Force = 0

σ

X
· 

X
· 

ΩΤ

XΤ

Figure 12. The clamping control.
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supply the control signal (u) that is needed to hold the robot at
a location xT (Figure 15),

u ¼ KP � eþ b: (45)

The fixed-point iteration method [28] is used to evolve an
estimate of the control signal so that the steady-state error is
driven to zero. This procedure is implemented using a
switched logic circuit with one memory-storage element.
One implementation requires the circuit to have two inputs:
the control that is directly fed to the robot and velocity of the
robot’s coordinates to assess convergence (other means to
decide if the robot has converged may be used). There is only
one output consisting of the bias term b. The bias term is
iteratively determined as follows: when motion is about to
settle (i.e., jdx/dtj< a, where 0< a�1), the circuit measures
the value of u and assigns it to b. This value is kept until the
event becomes true again at another instant i. At the ith
instant we have

u ¼ g(xi), b ¼ g(xi�1), and KP � e ¼ KP � (xT � xi), (46)

where xi is the position of the robot at the ith settling instant. Relat-
ing the earlier quantities using (45) yields the recursive relation:

g(xi) ¼ g(xi�1)þ KP � (xT � xi): (47)

Proposition 4

The recursive relation in (47) has a fixed point at which

(xT � xi) ¼ 0: (48)

Proof: Using Taylor series expansion around xT, we have:

g(x) ¼ g(xT )þ J(g(xT ))(x� xT )þ � � � ¼ g(xT )þ F(x� xT ),

(49)

where J is the Jacobian matrix of g and F is a function contain-
ing the (x � xT) terms of the Taylor series. Substituting (49)
into (47) we get:

F(e0i) ¼ F(e0i�1)� KP � e0i , (50)

where

e0i ¼ �(xT � xi): (51)

Now, let g¼ F(e0) and Q be the inverse function of F in the
neighborhood of xT. Substituting Q in (50), we obtain the
recursive relation:

KP �Q(gi)þ gi ¼ gi�1: (52)

At a fixed point, we have: gi¼ gi � 1, or

KP �Q(gi) ¼ 0: (53)

Since KP is positive definite, i.e., it is not singular:

Q(gi) ¼ e0i ¼ (xi � xT ) ¼ 0: (54)

In other words: xi¼ xT.
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Figure 15. The suggested scheme for iterative-error cancelation.
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Proposition 5

For any positive definite KP, the fixed point x ¼ xT is a stable
attractor, i.e., if xi is sufficiently close to xT,

lim
i!1

xi ! xT : (55)

Proof: In the close neighborhood of xT, (47) may be written as:

J(g(xT )) � (xi � xT ) ¼ J(g(xT )) � (xi�1 � xT )þ KP � (xT � xi):

(56)

Notice that:

J(g(xT )) ¼ J(rP(xT )) ¼ H(xT ), (57)

where H is the symmetric Hessian matrix. Substituting (57) in
(56) yields the equation:

½KP þH(xT )��ei ¼ H(xT ) � ei�1, (58)

where ei ¼ ðxT � xiÞ.
Since KP is positive definite and H is symmetric, they are

simultaneously diagonalizable into:

KP ¼ UUT and H ¼ UKUT , (59)

where U is a nonsingular matrix, and K is a diagonal matrix
with nonnegative elements kl, l ¼ 1, . . . ,N, see [29, p.86].
Using the earlier decomposition, (58) may be written as:

U (I þ K)UT � ei ¼ UKUT � ei�1: (60)

Using the transformation qi ¼ UT � ei, we have

qi ¼ A � qi�1, (61)

where

A ¼ (Iþ K)�1K ¼

k1
1þk1

0 � 0

0 k2
1þk2

� 0
� � � �
0 0 � kN

1þkN

2
6664

3
7775: (62)

It is well known that the solution of (61) is

qi ¼ Ai � q0: (63)

Since

0 � kl

1þ kl
< 1 l ¼ 1, . . . , N , (64)

we have:

lim
i!1

qi ¼ lim
i!1

UT � ei ! 0: (65)

Since U is a nonsingular matrix,

lim
i!1

ei ! 0, (66)

or

lim
i!1

xi ! xT : (67)

Results

Point Mass in a Cluttered Environment
The gradient field in Figure 1 is augmented with NADF
instead of the linear, viscous, damping forces. The combina-
tion of both gradient field and NADF is used to steer a 1-kg
mass from a start point to a target point. An excessively high-
damping coefficient, bd = 10, is used. The trajectory of the
mass is shown in Figure 16. The kinodynamic trajectory of
the mass is almost identical with that marked by the gradient
field (kinematics only) in Figure 1. Moreover, motion of the
mass is almost six times faster than its viscous damping coun-
terpart shown in Figure 5 with a settling time (TS) of about
12 s compared with 72 s. Figure 17 shows the control signal
(X–Y force components).

Settling Time—A Comparison
NADF and linear damping exhibit different behavior as far as
convergence is considered. The settling time for the point mass
with no constraints on speed example is drawn in Figure 18 as
a function of the linear viscous friction coefficient (b). The
TS–b relation is convex with one value for b corresponding to a
global minimum of TS. This is expected because, for low b,
high oscillations will prevent motion from quickly settling in
the 5% zone around the target. On the other hand, a high value
for b reduces the oscillations by slowing down the response,
delaying the entrance to the 5% zone.

The use of the NADF approach

extends beyond a single-

dynamical agent.
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Figure 16. Trajectory, NADF, and bd = 10.
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The relation between TS and the coefficient of NADF (bd)
is a rapidly and strictly decreasing one (Figure 10). Similar to
the linear case, for a low value of bd0 high oscillations will pre-
vent the quick capture of the trajectory in the 5% zone around
the target. As the value of bd increases, NADF only impedes
the component of motion along the coordinate field tangent

to the gradient guidance field. This component does not con-
tribute to convergence and only causes delay in reaching the
target. Since NADF attenuates, only this component of
motion leaving the motion along the gradient field unaffected,
the delay in reaching the target drops as bd increases, yielding a
strictly decreasing profile of the TS–bd curve. The TS versus
the coefficient of damping profile is important. It determines
the ability to tune the controller so that the specifications are
met. In tuning the controller, there are two requirements: it is
required that the maximum spatial deviation (dm) between the
kinematic and the dynamic paths be as small as possible so that
the constraints are upheld. It is also required that the settling
time be as small as possible. The first requirement is achieved
by making the coefficient of damping high. In the linear
viscous damping case, one can only strike a compromise
between TS and dm. For the NADF case, this compromise is
not needed, since both TS and dm are strictly decreasing as a
function of bd.

Point Mass with External Forces
The NADF approach may be adapted to work with second-
order systems experiencing external forces using the suggested
clamping control. In this example, a point mass with constant
external forces acting on it having the system equation in (68)
is controlled using a gradient field and NADF.

€x
€y

� �
þ 4

4

� �
¼ Fx

Fy

� �
: (68)

For a sufficiently high bd, the controller will succeed in
driving the mass to the target and avoid the obstacles (Fig-
ure 11). However, when the target is reached, drift caused by
the external forces occur.

In Figure 13, a clamping control similar to the one in (32) is
added with k = 1, bd = 10, and kC = 10. The controller was
able to hold the trajectory near the target point relying only on
a loose, upper bound estimate of the drift. Despite the high
value of kC, the trajectory settled in an overdamped manner.
The Fx and Fy control forces are shown in Figure 14.

The SM control approach suggested by Guldner and Utkin
in [21] for converting a gradient guidance signal into a control
signal has the ability to handle systems with external forces. In
this approach, a sliding surface (c) is defined as:

c ¼ _x� vd(t)
�rV
rVk k : (69)

The control signal is

F ¼ �F0
c
ck k , (70)

where vd and Fo are the maximum allowable speed and control
forces, respectively. The SM control is applied to the point mass
with drift in (68). The parameters of the sliding surface are set so
that a settling time of 6 s is obtained. Fo is set to obtain a maxi-
mum control effort of 100 N. The trajectory is shown in Figure
19, and the control forces are shown in Figures 20 and 21.
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Compared with the NADF approach, clamping the trajectory
obtained using the SM approach is a little shaky and experiences
some oscillations near the target. However, the biggest differ-
ence has to do with the quality and magnitude of the control sig-
nals used by both approaches.

Iterative Error Removal
The iterative procedure to remove the steady-state error sug-
gested in the previous section is tested using a simple pendu-
lum with concentrated mass m ¼ 1 kg and length L ¼ 1 m.
The dynamic equation of the pendulum is

m � L � €Hþ m � g � sin (H) ¼ u, (71)

where g is the acceleration constant and u is the external
applied control torque. A simple controller with position and
velocity feedback (72) is used to move the pendulum from
H¼ 0 to H¼ p/2.

u ¼ �k �H� b � _H: (72)

The weight of the pendulum causes significant steady-state
error (Figure 22). To remove the error, the switching circuit
suggested in V.2 is added to the controller. Different switching
thresholds are used to assess the sensitivity of the procedure to
the presence of transients (Figure 23). The error was elimi-
nated in all cases. Although the iterative error cancelation
procedure was designed to be used when transients fade away
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and motion settles, simulation shows that the procedure exhib-
its little sensitivity to the presence of transients that enables us
to loosely choose the threshold a. Actually, the simulation
reveals that better results in terms of having a lower settling
time could be obtained if switching is carried out before
motion completely settles. In Figure 24, the effect of the for-
ward gain on the speed of convergence is shown. As expected,
the higher the forward gain the faster the system converges to
its target.

If the drift term cannot be represented as the gradient of a
scalar function, the iterative procedure may still work. In (73),
a random drift term, c, is added to the system equation of the
pendulum:

m � L � €Hþ g � sin (H)þ 10þ 10 � c ¼ u, (73)

where c is white noise uniformly distributed between �0.5
and 0.5. The iterative procedure is used with no modification
to cancel this type of drift. The procedure was able to converge
in a statistical sense to the reference (Figure 25).

The iterative blind, error cancelation procedure was also
simulated for a two-link, three degrees-of-freedom arm robot
manipulator. The procedure was able to effectively remove the
error in a few iterations.

Conclusions
In this article, the capabilities of the HPF approach are
extended to tackle the kinodynamic planning case. The exten-
sion is provably correct and bypasses many of the problems
encountered by previous approaches. It is based on a novel
type of nonlinear, passive damping forces called NADFs. The
suggested approach enjoys several attractive properties. It is
easy to tune, can generate a well-behaved control signal, the
approach is flexible and may be applied in a variety of situa-
tions, and it is provably-correct. It is resistant to sensor noise,
does not require exact knowledge of system dynamics, and can
tackle dissipative systems as well as systems under the influence
of external forces. The use of the NADF approach extends
beyond a single-dynamical agent. It can be adapted for use
with a multirobot dynamical system [30] as well as robots with
nonholonomic constrains [31]. Most of the problems attrib-
uted to the potential field approach, namely the narrow corri-
dor effect, are a result of the misunderstanding of the dual role
a potential field plays as a motion actuator and a guidance
provider [33]. The NADF approach is a step forward in taking
both of these roles into account.
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