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Abstract-This paper extends the capabilities of the harmonic potential field
approach to planning to cover both the kinematic and dynamic aspects of a
robot’s motion. The suggested approach converts the gradient guidance field
from a harmonic potential to a control signal by augmenting it with a novel
type of damping forces suggested in this paper called: nonlinear, anisotropic,
damping forces (NADFs). The combination of the two provides a signal that
can both guide a robot and effectively manage its dynamics. The kinodynamic
planning signal inherits, fully, the guidance capabilities of the harmonic
gradient field. It can also be easily configured to efficiently suppress the
inertia-induced transients in the robot’s trajectory without compromising the
speed of operation. The approach works with dissipative systems as well as
systems acted on by external forces without needing  full knowledge of the
system’s dynamics. Theoretical developments and simulation results are
provided in the paper. 

I. Introduction
The harmonic potential field approach to planning is emerging
as a powerful paradigm for the guidance of autonomous agents.
Since it was suggested in the mid-late eighties [1,2] the
approach is continuously being developed to meet the stringent
requirements operation in a real-life environment imposes on an
agent. Until now, the approach has amassed many attractive
properties crucial for enhancing goal reachability. The approach
is provably-correct driving the agent to a successful conclusion
if the task is manageable and providing an indication if the task
is intractable. It can be used to guide the motion of  an
arbitrarily shaped agent in an unknown environment regardless
of its geometry or topology relying only on the sensory data
acquired online by the agent’s finite range sensors. The method
can also impose a variety of constraints on the agent’s trajectory
such as regional avoidance and directional constraints [3-8].
Harmonic functions are also Morse functions and a general form
of the navigation functions suggested in [13], see appendix-1. 

A planner may be defined as an intelligent, purposive, context-
sensitive controller that can instruct an agent on how to deploy
its motion actuators (i.e.generate a control signal) so that a target
state may be reached in a constrained manner. Traditionally, a
planning task is distributed on two stages: a high level control
(HLC) stage and a low level control  (LLC)  stage. The HLC
stage receives data about the environment, the target of the
agent, and constraints on its behavior. It then simultaneously
processes these data to generate a reference plan or trajectory
marking the desired  behavior of the robot. This trajectory, if
actualized, leads to the agent reaching its target in the specified
manner. The reference trajectory is then fed to an LLC in order
to convert it into a sequence of action instructions to be
executed by the agent’s actuators of motion. Unfortunately, the
HLC-LLC paradigm for planning suffers from serious problems
that adversely impact its performance in a realistic setting. An
alternative may be achieved by fusing the HLC and LLC
modules into one called the navigation control. A navigation
control  attempts to directly convert the environmental data, goal
of the robot, and constraints on its behavior into a control signal.
Khatib potential field  approach may be considered as one of the
first methods to cast planning in a navigation control framework

[9]. The potential field  approach enjoys several attractive
features; most significant is the high speed by which a robot can
respond to the contents of its environment. 

The attractor-repeller setting  used to generate the potential field
has some problems. The most serious one has to do with
convergence where it was observed that a robot guided by such
a method may stop somewhere in the workspace before reaching
its target; the problem was termed the local minima problem.
Many methods were proposed to generate potential fields that
do not suffer from this problem [10-12]. Koditschek
diffeomorphism approach [13] was among the first methods
suggested to remedy this shortcoming.  To convert the gradient
guidance field from the potential surface (-LV) into a control
signal (u), Rimon et al. suggested that the gradient guidance
field be augmented with a viscous dampening force that is
linearly proportional to speed [14]: 

                                         (1)u b x V(x)= − ⋅ − ∇
According to [14], this combination will only work provided
that the initial speed of the robot at each point in space (T(x)) is
lower than an upper bound S(x):                 

                         (2)ω(x) S(x) x≤ ∈Ω
where  S is the workspace of the robot. Practical application of
the above faced two difficulties: first, no method was provided
to compute the upper bound S. Even if a method is devised for
doing so, there is no guarantee that in a practical situation the
initial speed of a robot can be made to lie below the admissible
upper bound. The second difficulty has to do with the fact that
the satisfaction of the upper speed constraint guarantees only
that obstacle avoidance constraints will be upheld and
convergence to the target will be achieved. In potential field
methods, transients can be a serious concern that could make it
impractical to use these techniques for controlling a robot. Also,
the approach seems to only deal with dissipative systems where
no mention of how the method may be applied when external
forces such as gravity are present. 
 

 In its current form the harmonic potential field (HPF) approach
can only operate in an HLC mode providing only a guidance
signal from the gradient of the potential. This signal has to be
converted into a control signal by an LLC. Guldner and Utkin
suggested an interesting approach based on a sliding mode
control for converting the gradient field from an HPF into a
control signal [21]. The approach is robust, has good
convergence properties, does not require full knowledge of
system dynamics and can make, with little transients, the
dynamic trajectory of the robot follow the kinematic trajectory
marked by the gradient field. The main drawback of the
approach seems to be the high chattering the control signal
experiences.  
 

In this paper a method is suggested to utilize the HPF approach
in a navigation control  mode  by augmenting the gradient



guidance field  from an HPF with a new type of damping force
called: nonlinear anisotropic damping forces (NADFs). It is
shown that an NADF-based control can efficiently suppress
inertia-induced artifacts in the dynamical trajectory of the
system making it closely follow the kinematic trajectory while
maintaining an agile system response. The approach does not
require the system dynamics to be fully known.  A loose upper
bound is sufficient for constructing a well-behaved control
signal that can deal with dissipative systems as well as systems
being influenced by external forces (e.g. gravity).   Earlier
version of this work may be found in [32]. 
  

This paper is organized as follows:  section II provides a brief
background of the potential field approach.  The NADF
approach is presented in section III.  Sections IV and V discuss
the application of the approach to dissipative systems and
systems experiencing external forces respectively.   Simulation
results are in section VI, and conclusions are placed in section
VII. 

II. Background
The HPF approach appeared shortly after the work of  Khatib.
Although the approach was brought to the forefront of motion
planning independently and simultaneously by different
researchers [16-20], the first work to be published on the subject
was that by Sato in 1987 [1]. The HPF approach eliminates the
local minima problem encountered in  [9] by forcing the
differential properties of the potential field to satisfy the Laplace
equation inside the workspace of the robot (S) while
constraining the properties of the potential at the boundary of S
('=MS). The boundary set ' includes both the boundaries of the
forbidden zones (O) and the target point (xT). A basic setting of
the HPF approach is:

                         x0S∇ ≡2V(x) 0
subject to:             .                         (3)V 0| & V 1|i x C i xi i

`= == ∈Γ

The trajectory to the target (x(t)) is generated using the HPF-
based, gradient dynamical system: 
                                  (4)x V(x) x(0) x0= −∇ = ∈Ω
The trajectory is guaranteed to:                 
      -      -          (5)lim x(t) x

t T
→∞

→ x(t) t∈ ∀Ω

whereby a proof of (5) may be found in [3]. Figure-1  shows the
negative gradient field of a harmonic potential and  the
trajectory, x(t), generated using the gradient dynamical system
in (4)  for the simple environment of a room with two dividers.
It ought to be mentioned that the HPF approach is only a special
case of a broader class of planners called PDE-ODE motion
planners [5] where the field is generated using the boundary
value problem:
solve:         L(V(x))  / 0  x 0 S
subject to:                    Q(V(x)) = 0   x 0 '.                          (6)
The trajectory is generated using the nonlinear system: 
                            (7)x (V(x)) x(0) x= = ∈F 0 Ω
where L is scalar partial differential operator, Q is a governing
relation restricting the potential or some of its properties at the
boundary to a certain value, F is a nonlinear vector function
mapping R6RN, N is the dimension of x, PDE stands for partial
differential equation, and ODE stands for ordinary differential
equation. Planners assuming a PDE-ODE setting other than that
of the one in (3) may be found in [3,7,8]. 

   

     Figure-1: Guidance field and generated trajectory of an HPF.    
      

      Figure-2: trajectory of a point mass controlled by the field in figure-1. 

The trajectory, x(t), generated by the dynamical system in (4) is
only  a reference trajectory that should be fed to an LLC in order
to generate the control signal, u. One way of converting the
guidance signal into a control signal is to augment the gradient
field with a component that is proportional to speed. This
seemingly straightforward solution is problematic.  In figure-2,
the negative gradient of the potential in figure-1 is used to
navigate a 1kg point mass. The system equation is:                  
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where b=0.1. Despite the initial speed being zero, the trajectory
violated the avoidance condition and collided with the wall.   

III. The NADF Approach
An intuitive  solution for converting a  gradient guidance field
into a navigation control signal is to  increase the coefficient of
the linear velocity term to a sufficiently high level. The linear
velocity component acts as a dampener of motion that may be
used to place the inertial force under control by marginalizing
its disruptive influence on the trajectory of the robot that the
gradient field is attempting to generate. The following example
demonstrates that this solution is impractical. In order to
generate a control signal that would satisfy the avoidance
constraints (5), the coefficient of damping of the system is
increased to b=0.15. Figure-3 shows the resulting trajectory and
figure-4  shows the distance to the target as a function of time.
Although the trajectory did converge to the target point (xT) and
did  not violate the regional avoidance constraints, unacceptable
transients along with significant deviations from the path
marked by the gradient field (figure-1) are present. In a second
attempt to generate a well-behaved control signal, the
dampening coefficient is significantly increased to b=.7.



Although a well-behaved trajectory was obtained (figure-5),
significant slowdown of motion did occur (figure-6). 

 

The method for converting the gradient field from a harmonic
potential into a navigation control signal by simple
augmentation with a linear velocity damping term is incorrect.
This approach ignores the dual role the gradient field plays as a
control and guidance provider. The field guides a robot to the
target using vectors that point out the directions along which the
robot has to move if the target is to be reached and the obstacles
are to be avoided. At the same time, these vectors are forces that
act on the mass of the robot in order to actuate motion. The
inertia of the robot will have a disruptive influence on motion.
The linear damping term manages the inertial forces in an
attempt to make the motion yield to the guidance provided by
the gradient field.  A damping component that is proportional to
velocity exercises omni-directional attenuation of motion
regardless of the direction along which it is heading. This means
that the useful component of motion marked by the direction
along  which  the  goal  component  of  the gradient of the
potential is pointing is treated in the same manner as the
unwanted inertia-induced component of the trajectory. These
two components should not be treated equally. Attenuation
should be restricted to the inertia-caused disruptive component
of motion, while the component in conformity with the guidance
of the artificial potential should be left unaffected (figure-7).
 

To better manage the effect of the inertial forces, a damping
component that treats the gradient of the artificial potential both
as an actuator of dynamics and as a guiding signal is needed. A
damping force (h) that behaves in the above manner is:

              (9)h(x, x) [( x ( V(x)
V(x)

x ( V(x) x)) V(x)
V(x)

]t
T

T= +
∇
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where n is a unit vector orthogonal to LV and M is the unit step
function. This force is given the name:  nonlinear, anisotropic,
damping force (NADF).  For the two dimensional case, an
NADF has the form:     
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where . A procedure for computing the∇ =V(x, y) [g g ]x y
T

component of motion normal to -LV in RN is in appendix-2. 
 

IV- Dissipative  Systems
In this section two propositions are stated and proven. The first
proposition shows that a gradient field of a harmonic potential
generated by the boundary value problem in (3) combined with
NADF can guarantee global, asymptotic convergence of a fully
actuated second order dissipative dynamical system.  The
second  shows that the dynamic trajectory of the system can be
made arbitrarily close to the kinematic trajectory generated by
the system in (4); hence, preserving the spatial constraints. 

Proposition-1: Let V(x) be a harmonic potential generated using
the boundary value problem  in (3). The trajectory of the
dynamical system: 
                                              (11)D(x)x C(x, x)x u+ =

           u b h(x, x) k V(x)d= − ⋅ − ⋅∇
will globally, asymptotically converge  to:     

                              (12)lim
t→∞
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for any positive constants bd and k, where x0RN, V(x):RN6R,
D(x) is an N×N positive definite inertia matrix, C(x, x)x
contains the centripetal, Coriolis, and gyroscopic forces.  Proof
of the above proposition is carried out using the LaSalle
principle [23]. 

      

      Figure-3: Trajectory, point mass, linear damping increased.
       

                    Figure-4: Distance to target versus time.
                      

   Figure-5: Trajectory, high linear damping. 
                          

                        Figure-6: Distance to target versus time. 



              

  Figure-7: nonlinear, anisotropic, damping force (NADF). 
    

Proof: Let = be the Liapunov function candidate:      

         (13)Ξ(x, x) k V(x) 1
2

x D(x)xT= ⋅ +

Note that since V(x) is harmonic, it must assume its maxima on
' and minima on xT . In other words, V(x) can only be zero at
xT; otherwise, its value is greater than zero:                        

                     .           (14)Ξ(x, x)
0 iff x x , x 0

positive otherwise
T=

= =⎡

⎣
⎢

The time derivative of the above function is: 

         .         (15)Ξ(x, x) k V(x) x 1
2

x D(x)x x D(x)xT T T= ⋅∇ + +

Substituting:        
         (16)x D (x)[ C(x, x)x b h(x, x) k V(x)]1

d= − − ⋅ − ⋅∇−

 along with (9) in the above equation yields: 
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Using the passivity property:         
           (18)x (D(x) 2 C(x, x))x 0T − ⋅ =

and rearranging the terms we get: 
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as can be seen        ,        (20)Ξ ≤ ∀0 x, x
where    Ξ Ω= ∀ ∈ =0 for x , x 0
according to LaSalle principle any bounded solution of (11) will
converge to the minimum invariant set: 

             .                 (21)E {x 0, x}⊂ =
Determining E requires studying the critical points of V(x).
According to the maximum principle, xT is the only minimum
(stable equilibrium point) V(x) can have. Besides xT , V(x) has
a finite number of isolated critical points {xi} at which LV=0;
however, the hessian at these points is non-singular, i.e. V(x) is
Morse [24]. A proof of this result may be found in appendix-1.
From the above it is  concluded that E contains only one point,

,  to which motion will converge. A proof based onx x , x 0T= =
Liapunov theory showing that, for the kinematic case, -LV(x)
can drive motion from anywhere in S to xT may be found in [3].

 Proposition-2: Let D be the trajectory constructed as the spatial
projection of the solution, x(t), of the first order differential
system in (4). Also let Dd be the trajectory constructed as the
spatial projection of the solution, x(t), of the second order
system in (11), figure-8. Then there exist a bd that can make the
maximum deviation   (*m) between D and Dd arbitrarily small. 
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 Figure-8: The kinematic and dynamic trajectories. 
 

Proof: The gradient field from an HPF does not only work as a
guide of motion to the target; it also may be used to cover S
with a complete set of boundary-fitted basis [4] coordinates.

 

 The radial basis of the system (LV/*LV*) marks the useful
component of motion. The basis orthogonal to this component
spans the instantaneous deviation between D and Dd (*) which
NADF is required to attenuate (figure-9). 

        

x

 Figure-9: The disruptive component of motion. 
 

The dynamic equation describing the disruptive component is:
  (22)n n n nT T T TD(x)x C(x, x)x b h(x, x) k V(x) 0d+ + ⋅ + ⋅ ∇ =
Examining the above equation term by term yields: 
1-    ,        (23)nT V 0∇ =

2-    = nT[(n x)n ( V(x)
V(x)

x ( V(x) x)) V(x)
V(x)

]t
T

T
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Φ ( xtn )

3- assuming a stable and non-impulsive system, an upper bound
can be placed on the speed:       .       (24)x max≤ ν
Therefore, the norm of the matrix C may be bound as:    
                                              (25)C( )x, x cmax≤
4- any inertia matrix belonging to a physical system is positive
definite, invertible, and have a bounded norm: 

                               (26)D(x) d max≤
where dmax, cmax, and <max are finite, positive constants. A
dynamic equation that yields an upper bound on * is: 
                    (27)d x c x b x 0max
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−b c
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To determine the effect of the disruptive  time component (>(t))
that acts normal to LV, the impulse response (z(t)) of (27) is
obtained:  

         .       (28)z(t) 1 1 z (t)`

= − =− ⋅

∆
Φ

∆
∆( ) ( )e tt



The deviation as a function of time may be computed as: 
       δ ξ( ) ( )t t= ∗ z(t)

where * denotes the convolution operation.  Since it was shown
in proposition-1 that motion will converge to xT and all dynamic
terms will tend to zero, >(t) may be bounded as:       

          ,                      (29)ξ(t) dt I
0

≤
∞

∫
therefore:           ,δ ξ( ) ( )t z (t) * t I` max= ≤

1
∆ ∆

where I and Imax are positive constants. By properly selecting a
value for ), the maximum deviation *m can be made arbitrarily
small. In other words the dynamic trajectory of (11) will closely
follow the kinematic trajectory of (4) and the spatial constraints
will be preserved.  It ought to be mentioned that since NADF is
by design made to be zero when motion is in accordance with
the guidance field LV, bd can be made arbitrarily large without
slowing down the system. This fact is clearly reflected by the
simulation results (figure-15). 

V. Systems with External Forces
The NADF approach may be adapted for designing constrained
motion controller for mechanical systems experiencing external
forces (e.g. gravity). The dynamical equation of such systems
has the form:  

                     (30)D(x)x C(x, x)x g(x) F+ + =
where g(x) and F are vectors containing the external forces and
the applied control forces respectively. A controller consisting
of the gradient guidance field and a strong enough NADF (31)
has the ability to make the trajectory of the system  in (30)
closely follow the kinematic trajectory from an initial  starting
point (xo) to the target point xT,
             .       (31)F b h(x, x) k V(x)d= − ⋅ − ⋅∇
However, due to the presence of the external forces the
controller will not be able to hold the state close to the target
point and drift will occur (Figure-16). Arimoto and Miyazaki
showed that steady state error caused by the external forces may
be cancelled by using an integral control action [27].
Unfortunately, an integral action raises the order of the
mechanical system and could cause it to become unstable if it is
not tuned properly. The integrator also induces a difficult to
manage transients in the system response. 
 

Here an alternative approach to using an integrator is suggested.
The suggested approach does not endanger stability and can
cancel the error caused by the external forces bringing the
dynamic trajectory arbitrarily close to the target point.  The
approach capitulates on the ability of the controller in (31) to
drive motion arbitrarily close to the target point. Once the
trajectory is close to the target, a passive clamping control
action is activated to trap the trajectory in a set close to the
target. After motion is trapped by the clamping control, an
iterative procedure is suggested for totally cancelling the error.
In the following the suggested clamping control is described.
 

1. Clamping control: 
The effect of the clamping control (Fc) is strictly localized to a
hyper-sphere of constant radius F surrounding the target point.
If motion is heading towards the target, this control component
is inactive. On the other hand, if motion starts heading away
from the target, the control becomes active and attempts to drive
the trajectory back to the target (Figure-10). 

              

     Figure-10: The clamping control. 
  

A clamping control that behaves in the above manner is: 
                 (32)Φ Φ ΦC T T

T
T(x, x) (x x ) ( x x ) (x (x x ))= − ⋅ − − ⋅ −σ

The strength of Fc is adjusted by multiplying it with a constant
kc so that the steady state error is kept below a desired level (,).
Unlike the integrator, the use of a clamping control will keep the
mechanical system stable for any positive value of kc. 

Proposition-3:  For the mechanical system in (30), a controller
of the form:                                                
                           (33)F b h(x, x) k V(x) k F (x, x)d C C= − ⋅ − ⋅∇ − ⋅
can make lim x(t) x

t T→∞
− ≤ <ε σ

and                     (34)lim x 0
t→∞

=

provided that: 
1- k, bd, and kc are all positive, 
2-     kc $ Fmax/,, 

                                x0SFF max g(x)max X
=

and           .                              (35)Ωσ σ= − ≤{x: x x }T

3- a high enough value of bd is selected so that at some instant
in time t` 

                          (36)x(t`) xT− < σ
4- k is high enough so that the gradient field is capable of
directing the trajectory to SF

           x0S-SF                 (37)k V(x) g (x) V(x)
V(x)

T⋅∇ >
∇
∇

Proof: Consider a Liapunov function candidate similar to the
one in (13) with a gravitational potential energy term (P(x))

added:                          (38)Ξ(x, x) k V(x) 1
2

x D(x)x P(x)T= ⋅ + +

note that:       and   .         (39)g(x) P(x)= −∇ P(x) g(z)dz= ∫
x

x

0

Differentiating (38) with respect to time we get: 

      (40)Ξ(x, x) k V(x) x 1
2

x D(x)x x D(x)x x g(x)T T T T= ⋅∇ + + +

solving for  from equations (30, 31) and substituting thex
results in (40) we get:       
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T Tσ
Since kc and bd are  positive we have: 



   ,   where   Ξ ≤ ∀0 x, x
    .                   (42)Ξ = ∀ =0 for x, x 0

Since we are assuming that k and bd are selected high enough so
that the dynamic trajectory will follow the kinematic trajectory
and enter SF , the minimum invariant set to which the trajectory
is going to converge may be computed from: 

           (43)g(x) k V(x) k F (x, x 0) 0C C+ ⋅∇ + ⋅ = =
Since M(0)=1, and x0SF (i.e. M(F-*x-xT*)=1), equation (43)
becomes:    

               (44)g(x) k V(x) k (x x ) 0C T+ ⋅∇ + ⋅ − =
As can be seen if condition 2 on kC is satisfied, the solution of
the above equation has to lie in the set S, ={x:*x-xT*<,}. This
means that the deviation of the end of the dynamic trajectory
from the target point should at most be ,. 
   
Another alternative to the use of integration is to reduce steady
state error by increasing the gain of the gradient field (k) to a
sufficiently high level. This approach makes the transient
difficult to manage and increases the control effort. On the other
hand, selecting a high gain of the clamping control (kC) to
manage the steady state error will not cause the above problems.
This is due to the fact that this control component is designed to
be minimally intrusive affecting the system only when it is
needed. This is clearly demonstrated by simulation  (figure-
17,18)
 

2. Iterative, blind error cancellation: 
While clamping control has the ability to reduce the steady state
error to an arbitrarily small value, sometimes it is desired that
this error be totally cancelled. Here, an iterative, blind procedure
is suggested  for error cancellation. The procedure works by
providing an alternative path ($) other than the error channel
(KPAe, where KP is a positive definite matrix) to supply the
control signal (u) that is needed to hold the robot at a location xT
(figure-11),  

              u = KPAe + $       (45)
      

Figure-11: The suggested scheme for iterative error cancellation.

 The fixed point iteration method [28] is used to evolve an
estimate of the control signal so that the steady state error is
driven to zero. This procedure is implemented using a switched
logic circuit with one memory storage element. One
implementation requires the circuit to have two inputs: the
control that is directly fed to the robot and velocity of the
robot’s coordinates in order to assess convergence (other means
to decide if the robot has converged may be used). There is only
one output consisting of the bias term $. The bias term is
iterativly determined as follows: when motion is about to settle
(i.e. *dx/dt*< ", where 0 < " <<1), the circuit measures the
value of u and assigns it to $. This value is kept till at another
instant i the event becomes true again. At the i’th instant we
have: 

 u=g( xi),  $=g(xi-1), and  KPAe = KPA(xT-xi)        (46)

where xi is the position of the robot at the i’th settling instant.
Relating the above quantities using (45) yields the recursive
relation:   g( xi) = g(xi-1) + KPA(xT-xi) .        (47)
 

Proposition-4: The recursive relation in (47) has a fixed point at
which                                (xT-xi) = 0 .        (48)
Proof:  Using Taylor series expansion around xT, we have: 
g(x) = g(xT) + J(g(xT))(x-xT)+ .... = g(xT) + F(x-xT)          (49)
where J is the Jacobian matrix of g and  F is a function
containing the (x-xT) terms of the Taylor series. Substituting
(49) into (47) we get:            

  F(e`i) = F(e`i-1) - KPAe`i       (50)
where      e`i = - (xT - xi) .       (51)
Now let 0=F(e`) and Q be the inverse function of F in the
neighborhood of xT. Substituting Q in (50), we obtain the
recursive relation: KPAQ(0i) + 0i = 0i-1 .        (52)
At a fixed point we have :   0i = 0i-1 ,    or    

KPAQ(0i) = 0.                 (53)
Since KP is positive definite, i.e. it is not singular: 

                  Q(0i) = e`i = (xi - xT) = 0                 (54)
In other words:         xi = xT .

Proposition-5: For any positive definite KP, the fixed point x=xT
is a stable attractor, i.e. if xi is sufficiently close to xT, 

                    (55)lim
i→∞

→x xi T

Proof:  In the close neighborhood of xT, equation (47) may be
written as: 
             J(g(xT))A(xi-xT) =J(g(xT))A(xi-1-xT) +KPA(xT-xi)       (56)
Notice that:     J(g(xT)) = J(LP(xT)) = H(xT)       (57)
where H is the symmetric hessian matrix. Substituting (57) in
(56) yields the equation: 

 [KP + H(xT)]Aei = H(xT)Aei-1       (58)
where         ei = (xT-xi) . 
 

Since KP is positive definite and H is symmetric, they are
simultaneously diagonalizable into: 

     KP=UUT and H=U7UT        (59)
where U is a nonsingular matrix and 7 is a diagonal matrix with
non-negative elements 8l, l=1,..,N, see [29, page-86].Using the

above decomposition (58) may be written as:   
          U(I+7)UTAei = U7UTAei-1       (60)

Using the transformation  qi = UTAei ,
we have   qi = AAqi-1        (61)

where  .        (62)A I
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It is well-known that the solution of (61) is:    
qi = AiAq0        (63)

Since            l=1,..,N        (64)0
1

1≤
+

<
λ
λ
l

l

we have:                  .        (65)lim lim
i i→∞ →∞

= ⋅ →q U e 0i
T

i

Since U is a nonsingular matrix :                
            (66)lim

i→∞
→e 0i

or                   (67)lim x x
i i T→∞

→



VI. Results
1. Point mass in a cluttered environment: 
The gradient field in figure-1 is augmented with NADF  instead
of the linear, viscous, damping forces. The combination of both
gradient field and NADF is used to steer a 1Kg mass from a
start point to a target point. An excessively high damping
coefficient, bd=10,  is used.  The trajectory of the mass is shown
in figure-12. As can be seen, the kinodynamic trajectory of the
mass is almost identical to that marked by the gradient field
(kinematics only) in figure-1. Moreover, motion of the mass is
almost six times faster than its viscous damping counterpart
shown in figure-5 with a settling time (TS) of about 12 seconds
compared to 72 seconds.  Figure-13 shows the control signal (X-
Y force components).  

2. Settling time - a comparison: 
NADF and linear damping exhibit different behavior as far as
convergence is considered. The settling time for the point mass
with no constraints on speed example is drawn in figure-14 as
a function of the linear viscous friction coefficient (b).  As can
be seen, the TS-b relation is convex with one value for b
corresponding to a global minimum of TS. This is expected since
for low b high oscillations will prevent motion  from  quickly
settling in the 5% zone around the target. On the other hand, a
high value for b reduces the oscillations by slowing down the
response delaying the entrance to the 5% zone. 
        

                              Figure-12: Trajectory, NADF, bd=10. 
        

                        Figure-13: x and y control force components. 

The relation between TS and the coefficient of NADF (bd) is a
rapidly and strictly decreasing one (figure-15). Similar to the
linear case, for a low value of bd high oscillations will prevent
the quick capture of the trajectory in the 5% zone around the
target. As the value of bd increases, NADF only impedes the

component of motion along the coordinate field tangent to the
gradient guidance field.  This component does not contribute to
convergence and  only causes delay in reaching the target. Since
NADF attenuates only this component of motion leaving the
motion along the gradient field unaffected, the delay in reaching
the target drops as bd increases yielding a strictly decreasing
profile of the TS-bd curve. The TS versus the coefficient of
damping profile is important. It determines the ability to tune the
controller so that the specifications are met. In tuning the
controller there are two requirements: it is required that the
maximum spatial deviation (*m) between the kinematic and the
dynamic paths  be as small as possible so that the constraints are
upheld. It is also required that the settling time be as small as
possible. The first requirement is achieved by making the
coefficient of damping high enough. In the linear  viscous
damping case one can only strike a compromise between TS and
*m. For the NADF case this compromise is not needed since
both TS and *m are strictly decreasing as a function of bd. 

        

       Figure-14: TS versus b for linear damping. 
                           

   Figure-15: Settling time versus NADF coefficient. 

3. Point mass with external forces 
The NADF approach may be adapted to work with second order
systems experiencing external forces using the suggested
clamping control.  In this example a point mass with constant
external forces acting on it having the system equation in (68)
is controlled using a gradient field and NADF. 
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As can be seen from figure-16, for a sufficiently high bd the
controller will succeed in driving the mass to the target and
avoiding the obstacles. However, when the target is reached,
drift caused by the external forces occur. 



In figure-17 a clamping control similar to the one in (32) is
added with k=1, bd=10, kC=10. As can be seen, the controller
was able to hold the trajectory near the target point relying only
on a loose, upper bound estimate of the drift. Despite  the high
value of kC , the trajectory settled in an overdamped manner.
The Fx, Fy control forces are shown in figure-18. 
   

The sliding mode (SM) control approach suggested by Guldner
and Utkin in [21] for converting a gradient guidance signal into
a control signal has the ability to handle systems with external
forces. In this approach a sliding surface (() is defined as: 

            .       (69)γ = −
− ∇
∇

x v (t) V
Vd

The control signal is:             (70)F F0= −
γ
γ

where vd and Fo are the maximum allowable speed and control
forces respectively. The sliding mode control is applied to the
point mass with drift in (68).  The parameters of the sliding
surface are set so that a settling time of 6 sec is obtained. Fo is
set to obtain a maximum control effort of 100 N. The trajectory
is shown in figure-19. The control forces are shown in figures-
20,21. Compared to the NADF approach with clamping the
trajectory obtained using the SM approach is a little shaky and
experiences some oscillations near the target. However, the
biggest difference has to do with the quality and magnitude of
the control signals used by both approaches. 

        

 Figure-16: Trajectory, NADF - external force present.
     

          Figure-17: Trajectory, NADF and clamping. 

         

 Figure-18: x and y control force components - external force present.
        

             Figure-19: Trajectory - sliding mode control. 
        

          Figure-20- y force control component. 
                         

      Figure-21: x force control component.



4. Iterative error removal: 
The iterative procedure to remove the steady state error
suggested in the previous section is tested using a simple
pendulum with concentrated mass m=1Kg and length L=1m.
The dynamic equation of the pendulum is:               
                              (71)m L m u⋅ ⋅ + ⋅ ⋅ =sin( )Θ Θg
where g is the acceleration constant and u is the external applied
control torque.  A simple controller with position and velocity
feedback (72) is used to move the pendulum from 1=0 to
1=B/2. 

                                    (72)u k b= − ⋅ − ⋅Θ Θ

       

  Figure-22: Steady state error caused by weight of pendulum. 

As can be seen from figure-22, the weight of the pendulum
causes significant steady state error. In order to remove the
error, the switching circuit suggested in V.2 is added to the
controller. Different switching thresholds are used to assess the
sensitivity of the procedure to the presence of transients (figure-
23). As can be seen, the error was eliminated in all cases.
Although the iterative error cancellation procedure was designed
to be used when transients fade away and motion settles,
simulation shows that the procedure exhibits little sensitivity to
the presence of transients that enables us to loosely choose the
threshold ". Actually, the simulation reveals that better results
in terms of having a lower settling time could be obtained if
switching is carried out before motion completely settles. In
figure-24 the effect of the forward gain on the speed of
convergence is shown. As expected, the higher the forward gain
is the faster the system converges to its target.       

If the drift term cannot be represented as the gradient of a scalar
function, the  iterative procedure may still work. In equation
(73) a random drift term, P, is added to the system equation of
the pendulum:                  
                  (73)m L u⋅ ⋅ + ⋅ + + =sin( ) *Θ Θg 10 10 χ
where P is white noise uniformly distributed between -0.5 and
0.5. The iterative procedure is used with no modification to
cancel this type of drift. As can be seen from  figure-25, the
procedure was able to converge in a statistical sense to the
reference.
  

The iterative blind , error cancellation procedure was also
simulated for a two-link, three degrees-of-freedom arm robot
manipulator. The procedure was able to effectively remove the
error in few iterations.         

        

Figure-23: Error cancellation using switching circuit - different thresholds. 
                     

                          Figure-24: Effect of forward gain on convergence. 

Figure-25: error cancellation - random drift term. 
   

VII. Conclusions
In this paper the capabilities of the HPF approach are extended
to tackle the kinodynamic planning case. The extension is
provably-correct and bypasses many of the problems
encountered by previous approaches. It is based on a novel type
of nonlinear, passive damping forces called  NADFs. The
suggested approach enjoys several attractive properties. It is
easy to tune; it can generate a well-behaved control signal; the
approach is flexible and may be applied in a variety of
situations, it is provably-correct; it is resistant to sensor noise;
it does not require exact knowledge of system dynamics, and it
can tackle dissipative systems as well as systems under the
influence of external forces. The use of the NADF approach
extends beyond a single dynamical agent. It can be adapted for
use with a multi-robot dynamical system [30], as well as robots
with nonholonomic constrains [31].  It ought to be emphasized



that most of the problems attributed to the potential field
approach, namely the narrow corridor effect, are a result of the
misunderstanding of the dual role a potential field plays as a
motion actuator and a guidance provider [33]. The NADF
approach is a step forward in taking both of these roles into
account. 

Appendix-1
A. Definition: Let V(x) be a smooth (at least twice
differentiable) scalar function (V(x): RN 6 R). A point xo is
called a critical point of V if the gradient vanishes at that point
(LV(xo)=0); otherwise, xo is regular. A critical point is Morse,
if its Hessian matrix (H(xo)) is nonsingular. V(x) is Morse if all
of its critical points are Morse [24]. 

B. Proposition:  If V(x) is a harmonic function defined in an N-
dimensional space (RN) on an open set S, then the Hessian
matrix at every critical point of V is nonsingular, i.e. V is
Morse. 

Proof: There are two properties of harmonic functions that are
used in the proof: 
1- a harmonic function (V(x)) defined on an open set S contains
no maxima or minima, local or global in S. An extrema of V(x)
can only occur at the boundary of S, 

2- if V(x) is constant in any open subset of S, then it is constant
for all S. Other properties of harmonic functions may be found
in [26]. 
Let xo be a critical point of V(x) inside S. Since no maxima or
minima of V exist inside S, xo has to be a saddle point. Let V(x)
be represented in the neighborhood of xo using a second order
Taylor series expansion:                      

   V(x) V(xo) V(xo) (x xo) 1
2

(x xo) H(xo)(x xo)T T= + ∇ − + − −

      2x-xo2<<1.           (74)
Since Xo is a critical point of V, we have:                          
                       V V(x) - V(xo) 1

2
(x xo) H(xo)(x xo)' T= = − −

      2x-xo2<<1.           (75)
Notice that adding or subtracting a constant from a harmonic
function yields another harmonic function , i.e. V` is also
harmonic. Using eigenvalue decomposition [25]: 
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where U is an orthonormal matrix of eigenvectors, 8’s are the
eigenvalues of H(xo), and >=[>1 >2 ..>N]T = U(x-xo). Since V` is
harmonic, it cannot be zero on any open subset S; otherwise, it
will be zero for all S, which is not the case. This can only be
true if and only if all the 8i’s are nonzero. In other words, the
Hessian of V at a critical point xo is nonsingular. This makes the
harmonic function V also a Morse function. 
 

Appendix-2
Constructing an NADF force requires that the component of
motion normal to -LV be computed. Explicit computation of

such component requires that N-1 set of basis vectors fully
spanning the normal space be constructed. Although explicitly
constructing such basis in RN is possible, it is desirable that the
normal component of motion be computed using an indirect
approach that relies only on  -LV. This may be carried-out using
the following steps: 
1- compute the component of motion in-phase with -LV (xr), 

           (77)xr
T=
− ∇
∇

,x V(x)
V(x)

2- remove the in-phase component from creating the vector,x
         (78)x x V(x)

V(x)n = − ⋅
− ∇
∇

,xr

3- normalize xn to obtain the normal vector :,:        

                  (79)µ =
x
x

n

n

,

4- The orthogonal component may now be computed as:  
         (80).xTµ µ

The following example demonstrates that the above process is
equivalent to the direct procedure. 
Example:  at a certain point in space let  -LV=[1/%2    1/%2]T ,
n = [-1/%2   1/%2]T and =[0.6 -1]T . Using the direct procedurex
the normal component is: 

( n)An  = [0.2  - 0.2]T .         (81)xT

Using the indirect procedure, we have: 
xr = (-LV) = - 0.28284,        (82)xT

xn = - xrA(-LV) = [0.8   - 0.8]T ,        (83)x
normalizing xn we have:

: = [ 1/%2    -1/%2]T .        (84)
The orthogonal component of motion is: 

* :*A: =  [0.2  - 0.2]T .        (85)xT

As can be seen, the answer is the same as the one from the direct
approach. 
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