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Abstract—Spatial multiagency has been receiving growing at-
tention from researchers exploring many of the aspects and modal-
ities of this phenomenon. The aim is to develop the theoretical
background needed for a multitude of applications involving the
sharing of resources by more than one agent. A traffic manage-
ment system is one of these applications. Here, a large group of
mobile robots that are operating in communication-limited, and
sensory-limited modes are required to cope with each others pres-
ence as well as the contents of their environment while preserving
their ability to reach their preset independent goals. This paper
explores the construction of a decentralized traffic controller for
a large group of agents sharing a workspace with stationary
forbidden regions. The suggested multiagent motion controller is
complete provided that a lenient condition on the geometry of
the workspace is upheld. It has a low computational effort that
linearly increases with the number of agents. The controller is
also self-organizing; therefore, it is able to deal, on its own, with
incomplete information and unexpected situations. In addition to
the above, the controller has an open structure to enable any
agent to join or leave the group without the remaining agents
having to adjust the manner in which they function. To meet
these requirements, a definition of decentralization is suggested.
This definition equates decentralization to self-organization in a
group of agents operating in an artificial-life mode. The definition
is used to provide guidelines for the construction of the multi-
agent controller. The controller is realized using the potential field
approach. Theoretical developments, as well as simulation results,
are provided.

Index Terms—Artificial life (AL), decentralized, motion plan-
ning, multiagent, nonlinear motion control, potential fields, self-
organization.

NOMENCLATURE

AL Artificial life.

G-type Genotype of behavior.
P-type  Phenotype of behavior.
EHPC Evolutionary hybrid partial differential equation-

ordinary differential equation (PDE-ODE) controller.
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Purpose field component of the multiagent controller.
Conflict resolving field component of the multiagent
controller.

Hyperaction space.

Self-component of the potential field whose gradient
is used to guide the ith agent to its target.

A potential field whose gradient forms a force field
that fences the ith agent in order to prevent collision
with other agents.

A potential field whose gradient field enhances the
ith agent’s ability to prevent collision with stationary
obstacles.

A vector potential field assigned to the ¢th agent in
order to generate the circulating tangent field.
Gradient operator.

Laplace operator.

Divergence operator.

Curl operator.

Self-control of the ith agent.

Stationary obstacle avoidance component of u;.

PRF component of u;.

CRF component of u;.

Agent collision prevention radial component of uc;.
Deadlock prevention tangent component of uc;.
Stationary obstacles.

Workspace.

Boundary of the obstacles (I' = 00).

Boundary of the obstacles known to the ith agent at
time .

ith agent.

Expanded boundary of the ith agent.

Sensory region surrounding the 7th agent.

Parking (target) region of the 7th agent.

Radius of D;.

Radius of Dj.

Width of the \S; region (p; — p}).

Positive scalar monotonically decreasing weighting
function.

Null set.

Number of agents in the workspace.

Number for agents in the vicinity of the ¢th agent at
time ¢.

Set of agents in the vicinity of the ¢th agent at time ¢.
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Q; A binary variable indicating the presence of a previ-
ously unknown part of the stationary environment in
the vicinity of the ith agent.

Time instant with discrete time index n at which the
value of ); changes from O to 1.

Center point of the ith agent at time ¢.

Center point of the target zone T; of the ¢th agent.

A scalar Lyapunov function candidate.

Time derivative of =.

Set of all points where Z=0.

Largest invariant set in E.

Unit vector normal to I'.

Curvature (k = d7/ds).

A unit vector tangent to a trajectory.
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I. INTRODUCTION

HE SCARCITY of resources in modern environments

makes it necessary for the agents occupying that environ-
ment to share available resources. Whether it is the congested
airspace of international airports, roads, and highways at rush
hours, or the busy downtown sidewalks of a metropolitan city,
the agents must make intelligent use of the resource of space
for each to safely reach its target, hopefully, along the shortest
path that the situation permits. Multiagent systems are the focus
of intensive investigation by researchers and engineers [52],
[53]. The main goal of research in this area is to conserve
resources via efficient utilization, and/or to tackle large tasks
cooperatively. This goal is seriously hindered by problems that
can arise as a result of two or more agents attempting to
utilize a resource in conflicting ways (e.g., trying to occupy
the same space at the same time). Designing social agents is
a difficult task. This is due to the simple fact that coexisting
in an environment changes the nature of the agents from that
of individuals into that of interconnected members of a group
affected by each other’s actions. An improper action on the
part of an agent can directly (by harming other agents) or
indirectly (by failing to fulfill a role that is vital to others)
have an adverse effect on other agents. The affected agents
may not necessarily be in the immediate physical proximity
of the offending agent (a chain effect). To shed some light on
the difficulties encountered by a multiagent system, consider a
daily act of planning which people engage in with little, if any,
attention to its complexity. The act is the simple trip from home
to work and back. In a metropolitan city, such a process involves
thousands if not millions of participants, each of whom is only
aware of his/her destination. The hard-to-acquire information
about the constituents of the environment and the intentions of
the other agents is not expected to be of much help. Any attempt
to use this information to derive a priori known conflict-free
goal-oriented trajectories will face serious difficulties. In so-
cieties of individually motivated agents, communication costs
are prohibitive [56]. As for the intellectual labor needed to
manage such a process in order to avoid conflict and guarantee
that each agent will safely reach its target, each path has to
be checked, along with goal satisfaction, for possible conflict
with the remaining IV — 1 paths of the other agents (/V agents
are assumed to be participating in the above process). This is

highly likely to translate into an exponential complexity (N'V)
that is more than enough, on its own, to cripple any attempt
of a central controller to coordinate the behavior of such a
large group. It is not difficult to extrapolate the actual level
of difficulty a realistic large-scale multiagent system faces. In
such a situation, no a priori considerations are given, or, in
the opinion of this author, can be given to whether a path
selected by an agent conflicts with the ones selected by others.
The agents are highly unlikely to have a priori knowledge of
all or any of the agents sharing their environment, let alone
knowing their intentions. Amazingly, such a massive purposive
organizational system seems to almost always operate well in
the face of incomplete information and the perceived need for
highly intensive computational requirements.

The above example is just one facet of multiagent sys-
tems. Spatial multiagency has been applied in air traffic [1]-
[3], and vehicular traffic [4] management systems, industrial
assembly [5], computer game design [6], mapping [7], and
automated reconnaissance systems [8]. Understandably, the
literature abounds with work on the theoretical foundation of
individually motivated multiagent systems, with coordination
and conflict management [9]-[12] being the central topic of
investigation. Although an intuitive assessment of the compu-
tational demands such systems may require has been supplied
at the beginning of this section, it has been theoretically shown
that the general multiagent problem is PSPACE-complete [6],
[12]. This proves that the complexity of searching for a solution
may have a lower bound that is exponential in the number of
agents.

There are two main focal points in the study of mobile
multiagents: The agents are either viewed as a collective whose
motion is motivated by a single group goal (group-motivated),
or they are viewed as individuals each motivated by its own goal
(individually motivated). In the first type motion of agents as a
team or a flock is studied with emphasis on deriving interagent
coordination mechanisms for constructing adaptive spatial for-
mations. Several approaches were considered for such a task.
Mclnnes [13] and Schnider and Wildermuth [14] used the po-
tential field approach for constructing a group navigator. Graph-
theoretic techniques treating a flock as a spatially induced graph
were examined in [15]-[17]. Distributed nonlinear control
schemes that are able to coordinate the behavior of the agents in
a manner that would give rise to complex formation maneuvers
by the group were suggested in [18]-[20]. Other approaches
to constructing formations using self-organization, heuristic-
reactive, and qualitative techniques may be found in [21], [22],
respectively. A method utilizing the motor schema approach for
such a purpose [65] may also be found in [23] and [66].

Purposive agents having independent goals may be divided
into two main classes. The first class is that concerned with
planning motion for one agent only that is sharing its workspace
with a noncooperative group of agents. In this scenario, the rest
of the agents do not reactively adjust their paths to accommo-
date the presence of the agent concerned. Techniques dealing
with such a situation may be found in [24]-[28]. The second
class presents a cooperative scenario where all agents simulta-
neously participate in reaching an accommodating arrangement
that enables all of them to reach their respective destination.
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Fig. 1. Partial taxonomy of multiagent systems.

Cooperative planning techniques are, in general, more difficult
to design than noncooperative ones. Examples of cooperative
methods may be found in [29]-[43]. Two main approaches for
the construction of such planners are based on geometry or po-
tential fields. While provably correct, geometry-based methods
that can effectively handle up to a medium size group do exist
[29]-[34], in general, the prevalently centralized nature of such
techniques results in an exponential complexity that makes their
use with a large number of agents undesirable. Potential field
methods [35]-[39], on the other hand, may be easily configured
in a decentralized mode. The advantages of decentralization are
numerous, some of which are: low complexity, high reliability,
and adaptability. While many approaches were explored for
building decentralized planners [39]-[43], multiagent decen-
tralized planning is still a challenge. The main two issues in
these approaches seems to be: proving the correctness of the
planning procedure and better control over complexity growth,
and the process of factoring the influence of context and con-
straints in the behavior generation process. In the few cases
where a provably correct decentralized planner was suggested,
arestrictive view of decentralization was adopted. For example,
in [39], a provably correct potential field-based multiagent plan-
ner was proposed. However, decentralization was considered
only in the sense of each system having no knowledge of the
targets of the other systems.

The focus in this paper is on constructing a decentralized
potential field-based cooperative individually motivated multi-
agent motion planner (a partial taxonomy of multiagent systems
is shown in Fig. 1. Work attempting to classify multiagent
systems may be found in [44] and [45]). The planning problem
tackled here is a practical special case of the general spatial
multiagent-planning problem that imposes no constraints on the
structure of the environment. Special attention is paid to devel-
oping a definition for decentralization capable of supporting the
construction of a planner with the following properties:

1) provably correct and complete, provided that a lenient
condition on the geometry of the workspace is upheld
(i.e., if a solution exists provided that the condition is
upheld, the planner will find it; otherwise, it indicates that
the problem is insolvable);

2) flexible (i.e., the event of agents joining or leaving the
group will not necessitate that each member of the col-
lective accommodate this change in the method it uses
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Fig. 2. Layout of the suggested multiagent planner.

to generate actions. Only the agents physically proximate
to where the change occurred have to carry out such an
adjustment. To the rest of the collective, the agents newly
arriving or departing remain transparent);

3) fault tolerant (i.e., if during operation one or more agents
unexpectedly fail, the remaining agents will still be able,
with a high probability, to continue unaffected to their
targets);

4) computationally feasible for a large group. The planner
suggested here has linear complexity in the number of
agents;

5) functional in informationaly deprived situations where
the static environment need not be a priori known; also,
the agents need not a priori know each other.

The planner is divided into two stages (Fig. 2).

1) A stage that consists of N single-agent planners each of
which is acting independently of the others as if it were
the only active entity utilizing the workspace. Each one of
these planners is referred to as the purpose field controller
(PRF). Their task is to steer the corresponding agent, in a
constrained manner, to it is a priori specified target.

2) An aggregation module whose primary function is de-
centralized conflict management. This module intervenes
only when a conflict situation is in close proximity to an
agent. It temporarily modifies the guidance actions from
the PRF so that the agent is steered along a conflict-
free path during that period. The conditioning action
from this module quickly dissipates after the conflict is
resolved, giving back full control over motion to the PRF
component. This module is called the conflict resolving
field (CRF) control.

The N single-agent planners (PRF controllers) used for
building the multiagent planner are constructed using an exist-
ing approach which the author participated in developing. The
approach employs evolutionary hybrid PDE-ODE controllers
(EHPCs) which are constructed using potential fields that are
set in an artificial life (AL) mode. The general framework
for such a type of planners was presented in [46]. Different
realizations of this framework may be found in [47]-[50].

The main contribution of this paper lies in the construction
of an evolutionary aggregation module that conforms to the
guidelines of AL [51]. The module operates in the manner
described above, is provably correct, and, most importantly,
the effort it exerts for guidance and conflict mediation is
linear in the number of agents. The module is designed for
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working with EHPCs. The conflict resolving action modifier
it employs is constructed from an underlying vector potential
field. As was demonstrated in [50], an action generated from
an underlying vector potential has superior motion steering ca-
pabilities compared to one generated from an underlying scalar
potential.

This paper is organized as follows: Section II of this paper
discusses centralized and decentralized control. It also provides
an interpretation of decentralization using the AL approach
to behavior synthesis. The multiagent motion control problem
is formulated in Section III. A realization of the controller
is suggested in Section IV. Section V provides an analysis
of the controller’s ability to safely drive each agent to its
target. The behavior of the suggested controller is explored
using simulation experiments in Section VI, and conclusions
are placed in Section VIIL.

II. CENTRALIZED VERSUS DECENTRALIZED CONTROL

In this section, the general properties of centralized control
systems are briefly presented. A definition of decentralization
that is derived from self-organization in a collective of agents
set to operate in an AL mode is proposed for the multiagent
case. With the help of the potential field approach, the definition
is used in Section IV to realize the CRF and PRF control
components used in constructing the multiagent controller. A
general discussion of multiagent systems along with a com-
parison between centralized and decentralized control may be
found in [52]-[55].

A. Centralized Multiagent Systems

Whether it involves one or more agents, successful context-
sensitive purposive behavior requires the presence of a process
for generating a regulating control action. This process receives
data from the environment, the agent(s), the target(s), and the
constraints on behavior, and converts them into a control action
that should successfully propel the agents, in a constrained
manner, toward their goals. There are two ways for generating
such a regulating action: a centralized approach, and a decen-
tralized approach.

The centralized approach has a holistic-in-nature, top-down
view of the behavior synthesis process. Here, a central agent
that has a duplex communication link to each member of the
group simultaneously observes the states of the agents and the
environment, and processes the database in a manner that is in
accordance with the aim of the group and the constraints on
behavior. It then generates synchronized sequences of action
instructions for each member. The instructions are then commu-
nicated to the respective agents for them to progressively mod-
ify their trajectories and safely reach their destinations (Fig. 3).
In this mode of behavior, the generation of the constraint-
satisfying goal-fulfilling conflict-free solution (i.e., sequence of
state-control pair) begins by constructing the hyperaction space
(HAS) of the group. HAS contains the space of all admissible
point actions which the agents may attempt to project. The HAS
is then searched for a solution that is in turn communicated to
the agents. The agents reflexively execute the solution trusting
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Fig. 3. Centralized approach to control.

that their actions will lead to the desired conclusion. It is a
well-known fact that, in real life, any solution generated by
a centralized mechanism is short lived. The dynamic nature
of real environments will cause a mismatch between the con-
ditions assumed at the time the controller begins generating
the solution, and the actual conditions at the time the solution
is handed to the agents for execution. Despite the attempt
to alleviate this problem by equipping the agents with local
sensory and decision-making capabilities, large-scale central-
ized systems still suffer serious problems, some of which are
stated below.

1) Almost all centralized planning and control problems
are known to be PSPACE-complete with a worst case
complexity that grows exponentially with the number
of agents. The large number of agents a traffic system
contains will prevent a central controller from adapting
to environmental changes in a timely manner, if not
crippling the control process altogether.

2) Centralized systems are inflexible in the sense that any
changes to the characteristics of one or more agents may
translate into a change in the whole HAS. This makes it
necessary to repeat the expensive search for a solution.
In turn, the desirable property that the size of the effort
needed to adjust the control be commensurate with the
size of changes in the setting is not satisfied.

3) Centralized systems are prone to problems in communi-
cation and action synchronization. This makes it difficult
to reliably operate a large-scale system even if the central
planner has the computational assets needed to meet the
demands of a realistic environment.

4) Centralized systems are not robust in the sense that the
failure of one agent to fulfill its commitment toward the
group could lead to the failure of the whole group.

B. Decentralized Multiagent Systems

In real-life, no agent, no matter how sophisticated it is, has
omniscient awareness of its surroundings, let alone infinite
resources to instantly store and process data. Sometimes, even
reliable communication links between the central agent and the
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Fig. 4. Decentralized approach to control.

others are difficult to establish. Communication may even be
impossible due to the lack of a universally accepted technical
language, even vocabularies. The above are a few reasons why
central planning strategies may not succeed with real-life large-
scale systems. Ruling out the feasibility of a central planner
leaves only the option of the regulating control action arising
from the agents themselves. The fact that the agents possess
only local sensing, reasoning, and action capabilities makes
it impossible to capture a complete spatial and/or temporal
representation of the process. This, in turn, makes it impossible
to build a HAS.

Obviously, it is not feasible for agents in a large group with
distinct goals to be a priori aware of each other’s presence, to
communicate with each other or with a central agent regarding
advice about what action to take. The only remaining option
is for each agent to make its own decision on how to act
based on the sensory data which the agent dynamically extracts
from its local surroundings (Fig. 4). Knowing that there is
more than one interpretation of decentralization, the author
considers a multiagent system decentralized if each agent in the
group is independent from the others in sensory data acquisi-
tion, data processing, and action projection. In a decentralized
system, these faculties are configured in a mode that would
give rise to coordination in the group without a coordinator.
In other words, the group is capable of self-organization. Un-
like centralized top-down approaches, self-organization is a
bottom-up approach to behavior synthesis where the system
designer is only required to supply the individual agents with
basic “self-control” capabilities. The overall control action that
shapes the behavior of the agents evolves in space and time
as a result of the interaction of the agents between them-
selves and with their environment. Some properties of decen-
tralized systems that conform to the above definition are as
follows.

1) No need to search or, for that matter, construct the HAS
of the group in order to generate a solution. For a de-
centralized system, the solution emerges as a result of
the agents interacting among themselves and with their
environment.

2) No interagent communication, or communication with a
supervisory agent. All that an agent is required to do is to

observe (not communicate with) other agents in its local
neighborhood. No preexisting awareness of the whole
group, or the whole environment is required.

3) Synchronous behavior being an emergent phenomenon
(instead of an imposed one) that results from asynchro-
nous interaction.

4) The cost of computing the control in the group grows
linearly with the number of agents.

5) Decentralized agents form open systems that enable any
agent to join or leave the group without the others having
to adjust the manner in which they process information or
project action. This is a consequence of each member of
the group being able to independently sense its environ-
ment, process data, and actuate motion.

6) Unlike centralized systems which are informationally
closed, and organizationally open, decentralized sys-
tems are informationally open and organizationally
closed.

The difference between centralized and decentralized sys-
tems goes far beyond the manner in which the behavior genera-
tion faculties are related to the agents. It reaches as deep as the
process enabling the system to generate the information needed
for behavior synthesis. Centralized systems use reasoning cou-
pled with search as the driver of the action selection process
(it ought to be mentioned that function(al) minimization is a
form of search). The search of the system’s space of possible
actions for a feasible solution may be carried out in a brute
force manner, or in an intelligent manner that utilizes heuristics
and side information for speed. No matter what form the search
assumes or how it is applied, systems relying on search have
problems (some of which are previously mentioned) if they
operate in a dynamic environment. On the other hand, the action
selection driver in decentralized systems that satisfies the above
requirements is a synergy-driven evolution. In this mode of
behavior, information synthesis is the result of the synergetic
interaction of the agents among themselves under the influence
of their environment. The information that is a priori encoded
into each agent in the form of self-capabilities to project actions
is usually simple and not adequate, on its own, to handle the
usually complex planning task which faces the group. It is
synergetic interaction within the context of the environment that
augments the level of information of the group to a level that is
sufficient for the members to carry out the task at hand (an act
of knowledge amplification).

AL [51] seems to provide a powerful paradigm for explaining
the behavior of decentralized systems. It also provides con-
structive guidelines for their synthesis. In an AL system, the
members of the group are equipped with the proper elementary,
a priori known capabilities for self-control which are called the
genotype of behavior (G-type). On the other hand, the overall
control action that actually governs the behavior of the whole
group evolves in space and time as a result of the interpretation
of the G-type in the context of a particular environment (a
process of morphogenesis [64]). The whole control action is
called the phenotype (P-type) of behavior. This behavior cannot
be exactly, a priori, predicted; only certain aspects of it can
be a priori known. It is very flexible, highly adaptive, and far
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Fig. 5. Zones related to the agent.

exceeds in complexity and informational content the G-type
control. There are two requirements for constructing a proper
G-type control action.

1) Each agent must individually develop a control action to
drive it toward its goal. Such a control need not take into
consideration the control actions generated by the other
agents of the group.

2) Each agent must have the ability to generate a control that
can resolve conflict with other agents through bilateral
interaction.

III. FORMULATION

In this section, the problem of decentralized, multiagent
motion planning in the face of incomplete information is for-
mulated. Here, an agent (D;) is assumed to be massless, and oc-
cupy a set of points that forms a multidimensional hypersphere
(r € RM) with a radius p; and a center z;:

Di(zi,p) ={z |z —z[ < pi}, i=1...,L (D

where L is the number of agents occupying the workspace
(Fig. 5). An enlarged circular region (D)) with radius p}(p; >
pi) and center x; is assumed to be surrounding D;:

Di(zi, p)) = {z: |z — x| < pl}, i=1,...,L
D; C D,. 2

Here and in the rest of this paper, D; and D, are used to refer
to D;(x;, p;) and Di(z;, p}), respectively. The ring S;(S; =
D) — D;) surrounding D; marks the region illuminated by the
sensors of the ith agent. The time between an agent sensing
an event and releasing a control action (data processing and
action release delay) is assumed small enough to be neglected.
Therefore, this region is a dual sensory and action zone. Besides
the agents, the environment is assumed to contain static forbid-
den regions (O) which the agents must not occupy at any time
(OND; =¢,Vt,i=1,...,L). The agents are only allowed to
exist in the workspace Q(Q = RM — O). The boundary of the
forbidden regions is referred to as I'(I" = 0O). The destination

T, D,\©.7 X
I\, C2 3 s
T I q@
{ .o .?MP&
E Dy B ey
\ T LT I
\\\ ~ \\ Q //1

Fig. 6. Goal-oriented agents in a cluttered environment.

of the ith agent is surrounded by the spherical region 7; with a
center C; (Fig. 6). T;s are chosen so that

D, CT; z; = C}
T,NT)=¢ i
oONT; = ¢ i=1,.... L. 3)

The last two conditions, respectively, mean that the goals
of the different agents should not be conflicting, and should
be attainable (i.e., lie inside €2). The partial knowledge the
ith agent has about its stationary environment is represented
by (' DT D ¢,i =1,...,L). The discrete-in-time, binary
variable Q;(Q; € {0, 1}) marks the event of a novel discovery
of parts of a forbidden region, i.e.,

S;NT # ¢ 4
and

((SZQF)—(SZQF)QF;)#¢7 i=1,...,L.

If at any instant in time (t,,), this condition becomes true, the
content of I", is adjusted so that

Fi(tn) = Fi(tnfl) U (Sz N F) (@)

If such a situation transpires, Q;(t,) is set to 1, otherwise,
its value is set to zero. The ith agent also actively monitors
its immediate neighborhood for the presence of other agents.
It forms the set

Xi(t)Z{af:LjJDj 15N D; # ¢7J'=17~-~7Ki(t)»i7éj}
(6)

where K;(t) is the number of agents lying in the proximity
of the ith agent at time ¢. Designing the multiagent controller
requires the synthesis of the dynamical systems:

i = hi(xi, Cy, Qiy xi, T), i=1...,L )
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such that for the overall system

X =H(X,C,Q,V,T)

{:igclasi(t)aci i=1,...,L

D;ND;=¢ Vit i#j

oONnD;,=¢ ®)
where z; € RM, X =[z1,...,27]T, C=][Cy,...,CL]T,

Q=1[Q1...QL]",

=%, ..., T, H=[h,... hi)",
and ¥ = [Xl N XL]T.

IV. CONTROLLER DESIGN

As discussed earlier in this paper, adopting an AL approach
to behavior synthesis reduces the job of the designer to the
construction of only the self-controllers (G-type control) of the
agents as individuals. The overall control action that regulates
the behavior of the agents as a group operating in the context
of some environment (P-type control) evolves as a result of
the constrained synergetic interaction among the agents. The
designer is required to synthesize controls for the systems:

The ith self-control is divided into the following three
components:

w; = ug; (z;,Ci, Qi, I) + uci(zi, x;) + uos (z;15)  (10)
where ug; is the PRF component of the th self-control, uc; is
the CRF component, and uo; is an optional control component
that is included as an extra precaution against collision with
stationary obstacles. uo; is taken as the positive gradient of a
potential field constructed as the inverse distance to the obstacle
closest to a robot. In practice, the potential is substituted for by
a signal derived from a proximity range sensor. Details about
how to construct uo; may be found in [57]. It ought to be
mentioned that ug; includes, among other things, the ability
to avoid collision.

A. PRF Control

The PRF controllers (self-controllers) are constructed using
an evolutionary hybrid PDE-ODE control framework. This
section provides only a brief overview of EHPCs. For a detailed
discussion of EHPC, and a proof of correctness the reader is
referred to [46]—[50] and respectively.

An EHPC (Fig. 7) consists of two parts:

1) a discrete time-continuous time system to couple
the discrete-in-nature data acquisition process to the
continuous-in-nature control action release process;

2) a hybrid, PDE-ODE controller to convert the acquired
data into information that is encoded in the structure of
the microcontrol action group.

The EHPC representing the ith PRF control component is

ug; = —VV; (2;,Ci, Qi(tn), I (tn)) (1n

Subjective Environment ‘ Objective Environment

[Belief] [Reality]
C int:
oTtralrl s Dissconance Alert
H Re-acti
Goal | Evolving T Real
Belief Agent
o g Env.
Potential Field | Action K
Instructions Action

Initial guess of  Agent's State
environment

Dissonance reduction E;Elizy
[Self-Organization] belief
Fig. 7. Structure of an EHPC.

so that for the gradient dynamical system

i; = —VVi (i, Ci, Qi(tn), Ti(tn))

Lirrzlxi(t)HCi i=1,....,Lin=1,...,Z (12)

t— o0

and

D,NO=¢ Vit

where n represents the nth instant at which condition (4)
becomes valid (t,,), Z is a finite, positive integer, and V is the
gradient operator. At ¢,, which marks the transition of Q;(t,,)
from O to 1, first the contents of I'; are adjusted according to (5).
The structure of the guidance field of the EHPC is then adjusted
to incorporate the newly acquired data.

An EHPC assumes a specific form depending on the bound-
ary value problem (BVP) used for synthesizing the potential V;.
The Dirichlet BVP, shown in (13), is used here for generating
the PRF control components:

V2Vi(z) = 0,

r€RN -T,-C; (13)

subject to
Vi = 0|x=c, and V; = 1| xcr,.

A sample of the behavior generated by an EHPC using such
a BVP [47] is shown in Fig. 8. For a proof of correctness, the
reader is referred to [49].

B. CRF Control

There are only two ways that conflict could arise in a
workspace occupied by more than one purposive mobile agent,
each of which is capable of safely reaching its target in the
absence of the others.

1) Two or more agents may attempt to occupy the same
space at the same time.

2) Two or more agents may block each other’s way prevent-
ing movement toward the targets.



MASOUD: CONTROL FOR INDIVIDUALLY MOTIVATED MOBILE AGENTS IN A CLUTTERED ENVIRONMENT

6 8 8

31 31 31

20 20 20

21 2 21

® End . End - End

1" 1] 1"

B B B

1st 2nd 3rd

‘1 L] " " Eil 28 a as '1 L1 " " Eil 28 o as ‘1 L] H " fal 8 a1 as

Fig. 8. Three successive attempts of a point agent to navigate an unknown environment.
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IR SR -7 Vrs are positive spherically symmetric monotonically decreas-
(a) ing functions whose values are zero for |z — ;| > p}. As for
JESETL N uct;, it is constructed as
/‘/ e \‘\
// ;iﬂ—)._}.“ N
Al W V x Aj(z — x;)
SRS . 1 i =
/ TN o \ uct; = o (jJz — x; V-A; =0
N S IR Ty o ‘
A AR (16)
I ¢ N
LAy : P - : :
VAN A S ; where V- is the divergence operator, and A; is a vector potential
R D, ¥ field [50] selected so that its gauge is zero
e B
NN T
N T e VVri(lz —z;|)” VX Aij(z —z;) = 0. (17)
~. -~ L 3 K2 7 ’L
\\\\ ‘é’é,_.- P
(b) This means that a vector potential field (A;) can only gener-
Fia o Radial ¢ the CRE. (b) T - " ate a tangent circulating field.
thlf'CR'F (@) Radial component of the - (b) Tangential component o For the local tangent fields to form a continuous global

A conflict resolving control (uc;) that can prevent the above
two events from happening will enable the utilizing agent to
reach its target. It is obvious that an agent can prevent another
from moving toward it, hence occupying the same space it is
using, by exerting a force that is radial (ucr;) to its boundary
[i.e., pushing the other agent away from it, Fig. 9(a)]. On the
other hand, an agent can prevent others from blocking its path
by exerting a force that is tangential (uct;) to its boundary
[i.e., moving out of the way, Fig. 9(b)].

The CRF component is the sum of the above two actions:

uc; = ucr; + uct;. (14)
The radial component of the control (ucr;) may be con-
structed as

VVr; (Jo — x4))
[VVr; (|2 = )|

ucr; = o (|x — x4])

15)

tangential action that has the potential to push the interacting
agents out of each other’s way and prevent deadlock, all the
individual tangent fields must circulate along the same direction
(Fig. 10).

The overall controller governing the ¢th agent is described by
the dynamical system:

&; =ug; + [ucr; + uct;] + uo;
= =VV; (@i, Ci, Qi(tn), Ti(tn))

K;(t)

£ ollei—ay)

J#1

V x AI(LZJ1 — Ij)
‘V X Ai(l‘i — {,Ej)l

IVVr; (|2 — ;)]
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where uo; = VVo,(z;, %), and Vo; is a scalar, repelling po-
tential field that is strictly localized to the vicinity of the
obstacles. The dynamical equation governing the behavior of
the collective is

i’l ugl(xlaClan(t7l)7F/1(tn))
i’g ugz($2,027Q2(tn)7F/2(tn))

i) Lugp(en, Cu.Quitn). T ()

r K (t) 7
ucy (z;— ;)
j=2
J#L
K> (t)
Z ucse (l‘i—.ﬁj)
=1

j#2

uoq (z1, T (t,))
uoz(xe, I (t,))

+ : - (19)

uor, (x ,.F' tn
(L L( )) L)
; oL (i —a;)

L j#L -

V. MOTION ANALYSIS

A detailed proof of the ability of the agents, individually,
to reach their respective destinations in an unknown cluttered
environment may be found in [49]. While it is not hard to
guarantee that the robots avoid collision with each other and
with the obstacles by making the barrier controls (uo;, ucr;)
excessively strong (some techniques set the strength of the
control to infinity at the inner boundary of the robots [57]),
their ability to converge to their respective destinations, as a
group, needs careful examination. In the following, it is shown
that the first-order dynamical systems in (18) are capable of
driving the robots from anywhere in the workspace to their
respective destinations provided that the narrowest passage in
the workspace is wide enough to allow the largest two robots to
pass at all times (i.e., no tight passages are allowed).

A. Proof of Convergence

Here, it is shown that under certain conditions the solution of
the system in (19) is globally asymptotically stable. The proof
is dependent on a theorem by LaSalle ([58, Th.3, p. 524]). The
theorem is restated below with minor changes to the notations.

Theorem: Let =(X) be a scalar function with continuous
first partials with respect to X. Assume that

1-—

[1]

(X)>0
(X) <0

VX #£C
v X.

2 —

(1]

(20)

Let E be the set of all points where == 0, and M be the
largest invariant set in E. Then, every solution of the system:
X =H(X,C,Q,¥,T) 21)

bounded for ¢ > 0 approaches M as t — oo.

e

Fig. 11. Restrictive environments force a priori determined spatial patterns
on movement.

Proposition 1: For the system in (19), there exists a set of
ucts that can guarantee

tlim X(t)—C (22)
provided that:
1) for the gradient dynamical systems:
i; = =VVi (@i, Ci, Qi(tn), Ti(tn))
tlim zi(t) — C; 1=1,...,L (23)
2)
Di Nno = (b

3) V' € Q, there exists xc, such that

ref{r:|jz—xc <& CQ

where £ = p}| + ph, where p} and pf, are the expanded radii of
the two largest robots in the group.

The third condition guarantees that nowhere in €2 will the
geometry of the environment prevent the agents from resolving
a conflict. The inability to resolve a conflict is the result of
an agent being forced to project motion along environmentally
determined degrees of freedom (Fig. 11). The forced pattern of
motion may not lend itself to the resolution of the conflict.

Its is important to guarantee that there always exists a local,
simply connected region that is large enough to enable any
two robots to interact. This ensures the realization of conflict
resolution no mater what pattern of motion the agents arrive at.

Proof: Consider the following Lyapunov function
candidate:

(24)

where V;(x;) is used to refer to V;(z;, C;, Q;(t,), T (tn)), and
Vo, (x;) refers to Vo;(z;, ;). It was shown in [49] that har-
monic potential fields are Lyapunov function candidates, i.e.,
Vi(z;) =0 for x; = Cy, and V;(x;) > 0 for x; # C;. There-
fore, the above sum is a valid Lyapunov function candidate,
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ie, E(X)=0for X =C, and Z(X) > 0 for X # C. The
time derivative of = may be computed as

[an@m—xj)

V x Ai(l‘i — {,Cj) :|
[VVr; (|2 — @;1)]|

IV x Ai(zi — ;)

+ VVoZ-(xi)] . (25)

The above expression is examined term by term to determine
the nature of the time derivative of =. It is obvious that the term

L
> VVi(2:) VVi(xs)

=1

(26)

is negative definite with a zero value (stable global equilibrium)
atandonly atz; = C;,i =1,..., L, (X = C). As for the term

L

=1

@7

One must first notice that V'Vo is a local field that is strictly
limited to a thin narrow region surrounding I'. Its value is zero
everywhere else in {). By construction, the field lines of VVo;
emanate normal to I" (in order to drive the robot away from the
obstacles):

a(z;)n, z; €T}

0, elsewhere (28)

VVo(y,) =

where n is a unit vector that is normal to I';, and « is a smooth
positive monotonically decreasing scalar function with a value
set to zero a small distance (¢) away from the boundary of
the obstacles (zin), ie., a(z;) =0 for zin > €. The BVPs
used for constructing the potential field associated with the PRF
control (V;) admits only two types of basic boundary conditions
(BCs):
1) homogeneous Neumann BCs

C(%Vl(xz) = VVi(z;)'n =0, z; =T} (29)
2) homogeneous Dirichlet BCs
Vi(z;) =1, ;=T
which in turn makes
in(:vl) =VVi(z;)'n<0 (30)

on

(i.e., the maximum of V; is achieved at ; = I, and its value
decreases with motion away from x; = I")). As a result the
above term is either

L
> VVi(:)'VVoi (i) = 0 (31)
i=1
or
L
> VVi(wi)'VVoi(z;) <0, @ =T,
=1

As for the second term of (25), it ought to be mentioned
that forces surrounding the mobile agents (CRFs) have a local,
reactive, passive nature. In view of the above, this guarantees
that no unbounded growth in the magnitude of the x;s can
occur. The worst case is for those forces to cause a deadlock
in motion (i.e., X — C' = constant, t — o0). Since in the worst
case scenario, motion will be brought to a halt (i.e., == 0),
also taking into consideration the negative definiteness of the
other terms, the time derivative of = is always less than or equal
to zero:

(1]

<0. (32)

If the ¢th robot enters a static equilibrium before the target is
reached, the following identity must hold:

Kz(t)

VVI',‘ Ti — X4
ZU(Ixz_x]|)|: (| ]|)_|_
=1

V x Ai(xi — xj) ]
VI (|2i = a5))]

|V X Al(l'l — .’E])|

= VVo,(z;) — VVi(z;). (33)
Therefore, the set F is equal to
d_
EFE=F1UE2=¢qx;: —=2=0 (34)
dt
where
3
and F2 = U; E2; where
K;(t)
E2; = { x; : VVo;(z;) — VVi(x;) + Z o (|lz; — zj])
=
VVi (|lzi—5]) VXAM%—)}
X =0, x #C;
(VVi(lzi—z;))| |V xAj(2;—j)]|
(35)

The largest invariant set M C E is the subset of E that
satisfies the equilibrium condition on (21). Before comput-
ing M, let us first examine if E2 is an equilibrium set of
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Fig. 12. Tangent fields with same circulation are free of singularities.

system (21). For this case, the system forces may be computed
using the following equation:

Ki(t)
hi =VVoi(z;) — VVi(zi) + Y o (|2 — )
=
VVri(|5ri— |) VXA( ‘—.I‘J)
IVVr; (|2 —a5))] [V x Ay j)] ’
i=1,...,L. (36)

It should be noticed that if the second condition of (23) holds,
the magnitude of the radial reaction forces (VVo;, and VVr;) is
determined by the self-forces (VV;) and the geometric config-
uration the robots assume during deadlock. On the other hand,
the magnitude of the circulating forces (V x A;) is totally
independent of the self-forces. Since the individual circulating
forces are made to rotate in the same direction, such fields
contain no singularities (Fig. 12). In other words, the circulating
forces never vanish, always guaranteeing that relative motion
among the agents can be actuated. The strength of these fields
can be independently set by the designer anywhere in the
workspace. Since the goal is to eliminate E2 from M, this
freedom is used to guarantee that h; £ OVx; # C;,i =1,... L.
In other words, the robots will always be moving whenever they
are in close proximity to each other (i.e., no deadlock).

Since the self-forces are generated from the gradient flow of
a harmonic potential, their magnitude in €2 is bounded

|v‘/;($z)| SBZ‘, JUZ#C“ 1= 1,...,L (37)
where B; is a positive, and finite constant. Also notice that
it is not possible for the magnitude of the passive reaction
forces to exceed that of the self-forces. Therefore, a simple and
conservative choice of the magnitude of the circulating field that

would guarantee that £2 is not an equilibrium set of (21) is

L
IV x Aj(x; — ;)] Z (38)

It should also be noticed that if the third condition of (23)
is not satisfied (i.e., there is not enough free space for the
largest two robots to move at all times) and the circulating
fields have to push against a static obstacle (a static obstacle can
exert infinite reaction force), no realizable choice of B;s would
exist to satisfy condition (38). The above treatment amounts
to the simple physical fact that whenever the radial reaction
forces of one or more robots are in equilibrium the circulating
forces intervene to pull the system out of deadlock. If the
above condition is satisfied, £2 is eliminated from M. Also,
since the robots have convex geometry, no equilibrium paths
can form, trapping one or more robots in a limit cycle. This
means that continuous motion along the tangent of a robot will
eventually lead to a move away from that robot, hence resolving
the conflict.

As for E1, the fact that the T;s are taken so that D,’i c T3,
guarantees that once the robots reach their respective des-
tinations, no interactions among their fields can occur (i.e.,
uc; = 0,and VVo, = 0,7 =1,..., L). Also, since

VVi(z;) = 0, z; =C; (39
system (21) reduces to
;=0 x;,=C; (40)
making the largest invariant set equal to
M:LiJ{xi:xi:Ci} i=1,...L. (41)

Therefore, according to LaSalle’s theorem, the robots will
globally, asymptotically converge to their respective destina-
tions, i.€.,

Lim,, — C; i=1,...,L. 42)

t—o00

B. Note on Completeness

As mentioned earlier, the suggested planner is conditionally
complete provided that conditions (23) and (38) hold. To ex-
amine why imposing the third condition of (23) is necessary
for the suggested planner to guarantee completeness, note that
behavior, in general, has two components: a spatial one that
consists of a vector field that assigns to each point in the
workspace a direction along which motion should proceed.
It also has a temporal component which consists of a scalar
field that assigns a speed to each point in the workspace.
Therefore, completeness for a general class of workspaces
implies the existence of a spatiotemporal pattern of behavior
which, if executed by the agents, leads to the satisfaction of
the goal. In general environments, where a solution exists
provided that behavior be spatially and temporally manipulated,
the environment may, at any one stage, deprive the planner
of the ability to fully manipulate spatial behavior. This could
happen by forcing one agent or more to follow predetermined
spatial behavioral patterns that are set by the geometry of the
workspace (Fig. 11). If such a situation occurs, the conflict can
only be resolved by manipulating the temporal component of
behavior (i.e., speedup or slow down the movements of the
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agents, as well as halt motion or reverse it). Since the suggested
planner is totally reliant on manipulating spatial behavior only,
it may fail if it encounters situations where both spatial and
temporal behavior have to be manipulated. The third condition
of (23) guarantees that the environment will never be able
to prevent the planner from spatially manipulated behavior in
order to resolve a conflict. In a recent study by the author [49],
a method for synthesizing a PRF control component that can
jointly enforce regional avoidance, and directional constraints,
may be used to guarantee that deadlock will not happen in
environments with tight passages. Unfortunately, this approach
for avoiding deadlock may reduce the set of potential solu-
tions to the nondirectionally constrained, multiagent-planning
problem.

VI. RESULTS

Several simulation experiments were conducted to explore
the behavior of the suggested method. Each case is presented
as a sequence of frames with each frame depicting the state
of the robots at different instants of the solution. The notation
used is the same as that in the theoretical development (i.e., D;
represents the ith robot, x; its center, and C; the center of the
target zone). The experiments focus on the unique capabilities
of the planner, as follows:

1) its ability to plan in highly congested spaces using online

sensory data only;

2) its ability to deal with unexpected events in an organiza-

tionally closed manner;

3) its ability to tackle workspaces with dimensions higher

than two as well as demonstrate the strong potential the
planner has to generate dynamics-friendly trajectories.

Attempts to extend an earlier version of the work in this paper
[59] were carried out in [60]-[63]. The primary focus of this
paper was on two issues: The conditioning of the differential
properties of the trajectories of the agents so that they become
dynamically suitable for traversal (the resulting trajectories
were referred to as flyable paths), and extending the method to
3-D spaces. Cases 1, 2, and 3 in the following examples show
that the method, in its original form, is fully capable of handling
these issues.

Case 1—A Basic Example: In Fig. 13, two robots sharing
the same obstacle-free workspace are required to exchange
positions. In doing so, each robot makes the simple, but naive,
decision of moving along a straight line to the target. Despite
the apparent conflict which each is heading toward, each robot
proceeds with its plan as if the selected action is conflict-free.
Once the conflict is in a phase that is detectable by the robot’s
local sensors, corrective actions are taken by each to modify
their behavior in order to resolve the conflict (i.e., the CRF con-
trol component is activated). As mentioned before, the “seed”
CRF activities consist of a component to prevent collision,
and another to move the agents out of each other’s way. Once
the conflict is resolved, the behavior modification activities
dissipate and guidance is fully restored to the PRFs (Fig. 14).

The robots are circular discs with equal radii p; = py =
p = 1. The local field region surrounding the robots is the same,
01 = d2 = 6 = 1.5. The motion of the robots is described by

F1
sl
c2 c1
F2
F3
.
7
F4

Fig. 13. Two robots exchanging positions.
PRF
X
CRF
Trajectory

-4 -2 Q 2

4
c2 D2

Fig. 14. CRF activities dissipate after conflict is resolved (trajectory of D2).

the motions of their centers: 71 = |21 y1]%, and 2o = [z2 yo]*.
The centers are driven by the self-controllers uy = [uz; uy;|?,
and uy = [uxs uyg]t, respectively. The self-controllers have
the forms:

u;

— (w1120, 10) [KT. {aﬁl - xﬂ VK, |:_(yl - yz)ﬂ

Y1 — Y2 (21— x2)
g B ]

=0 (21,Y1,T2,Y2) [KT' [b_ xl} TEe [_(yQ y yl)ﬂ

Y2 — Y1 (x2— 1)

LK —(xo— x12)
g [—(y2 —yra)

U($1»y17x27y2)

_ <1+ p1+ p2—+/ (21— 22)% + (1 —y2)2>

4]

-<<I> (\/(331 —x2)% + (y1 — y2)? —(p1+ P2)>
(@ (5 o1+ o)~ = 22 F 1 — 12%)

(43)
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where K, =04, K, =2, K, =1, ®(x) is the unit step
function, zry = [zry yri]' = [4 0]%, and xry = [zre yro' =
[—4 0", [£1(0) y2(0))¢ = [—4 0], and [25(0) y2(0)]% = [4 0",
The overall differential system governing the behavior of the
robots is

1| |z, ze, 1)
= . (44)
ch] |:1,I2(!L'1,CL‘2,$C7“2):|
Case 2—Conditioning Paths’ Curvature: It is highly desir-
able that the generated trajectories contain as few fluctuations
as possible. This is measured using the curvature x; = dr;/ds,
where 7; is a unit vector tangent to z;, and ds is an infinitesimal
component of the arc. It is necessary to keep the curvature
of a trajectory as small as possible if the trajectory is to be
dynamically suitable for traversal. Although the focus of this
paper is on generating safe trajectories for the agents to traverse
to their destinations, the method has been built with dynamics in
mind [67]. There are several parameters and components of the
planner that may be used to condition the differential properties
of the trajectories: the weighting function o is one of them. The
following example shows that the choice of the weight profile
has a pronounced effect on curvature. Three profiles are used

linear o(r)= <pgr+1> (u(r—p)—u(r —p—19))
sinusoidal o (r) :% (cos (g(r — p)+1)

X (u(r—p)—u(r—p—97)), and
exponential  o(r) = exp (a(r—p)) (u(r—p)) 45)

where a = In(8)/4, (3 is the magnitude of o at p+ 6(c(p +
§) =0 <« 1), and w is the unit step function. It ought to be
mentioned that unlike the linear and sinusoidal profiles, which
strictly localize that value of o to the interval (p,p + ¢), the
exponential profile only effectively localizes the weighting
function to this period.

The example in Case 1, which was conducted for the linear
profile, is repeated for all the three profiles. The curvature of
the trajectories is monitored (Fig. 15). The parameters of o are
p=1, =15, and g = 0.05. The maximum curvature ob-
served for the linear profile is Kyax = 0.0363. The maximum
curvature decreased almost threefold when the smoother sinu-
soidal weight function was used. The maximum curvature for
this case is Kmax = 0.01434. However, the best results were
obtained for the exponential profile with a Ky, = 0.00144
(almost a thirty times reduction compared to the linear profile
case). The above should not be considered more than a simple
demonstration of the method’s ability to generate dynamics-
friendly trajectories. Formal investigation of this feature is left
for future work.

An important parameter of the planner is the width of the
action zone (§). This width must not be too small to have
sharp turns. Nor should it be too large to preclude unnecessary
wide deviation from the initial paths planned by the PRF fields.
For all the above weight profiles, the maximum curvature is
plotted as a function of ¢ (Fig. 16). As expected, the maximum

Linear

c2 <aD2 kf |
D1 => ct

Cosine |
c2 <2 D2 P
D1 => C1 5

Exponential

¢

Time

Time

0 L 1 I

Time

Fig. 15. Effect of different CRF strength profiles on curvature.
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Fig. 16. Maximum curvature as a function of action zone width.

curvature is inversely proportional to 6. As can be seen, a
certain region for § is reached where any increase in its value
does not produce a commensurate reduction in the value of
the maximum curvature. Therefore, a cutoff value for J can
be established to strike a compromise between the above two
conflicting requirements.

Case 3—3-D Case: In the sequel, all the simulation exper-
iments are given for the 2-D case. As mentioned before, the
suggested method can be applied to multidimensional spaces.
The only reason that simulation experiments are restricted to
the 2-D case has to do with the clarity of presenting the results.
This is important for a qualitative understanding of the nature
of the planning action the method generates. To demonstrate the
applicability of the method to dimensions higher than two, the
two-robot example above is repeated for the 3-D case (Fig. 17).
Only the trajectories are plotted.

Case 4—Fault Tolerance: In Fig. 18, three robots operating
in an obstacle-free space, and initially positioned on the vertices
of an equilateral triangle are required to proceed toward their
symmetric targets. Each robot chooses to proceed along a
straight line to its target ignoring the apparent conflict to which
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Fig. 18. Three robots moving to their goals, all functioning.

this choice leads. For this case, the response of the robots,
once a conflict is detected, exhibits an interesting emergent
nature. By reducing the degrees of freedom of the system
from six to one, the three robots act as one rotating body to
position themselves where each can proceed unimpeded toward
its target. It is interesting to note that without being a priori
programmed to do so, the robots choose to cooperate in order
to resolve the conflict. This cooperation is manifested as a
reduction in the degrees of freedom of the system during the
period of the conflict. In a centralized system, the supervisory
control assigns each agent the duties it has to fulfill for the
whole group to avoid conflict. If one agent fails to fulfill its
obligation toward the group, the whole group may be affected.

Fig. 19. Three robots moving to their goals, D2 malfunction.

In decentralized systems, conflict evasion has a lucid nature
where conflict evasion activities dynamically shift from the
unable, or unwilling agents, to the remaining functional agents.
Here, an agent’s role keeps adapting to the situation in a manner
that would, to the best of the agent’s ability, enable all the
agents (this includes the offending agents) to reach their targets.
The following example examines this interesting property of
decentralized systems. In Fig. 19, a setting similar to the one
in Fig. 18 is used. The only difference is that D2 refuses to
participate in conflict resolution and, instead, follows the plan
encoded by its PRF requiring it to move along a straight line to
its target. As can be seen, the remaining two agents adjust their
behavior to compensate for the intransigence of D2 in such a
manner that allows all the agents to reach their destinations.
Case 5—Self-Organization: In the following two examples,
the evolutionary cooperative self-organizing nature of the con-
troller is clearly demonstrated. In Fig. 20, two groups of four
robots each are moving in opposite directions along a road
with side rails blocking each other’s way. The goal is for the
left group to move to the right side, and the right group to
move to the left side. The groups collectively solve the problem
by forming right and left lanes and confining the motion of
each group to one of the lanes. It should be noted that lane
formation is a high-level holistic organizational activity that
fundamentally differs from the local capabilities with which
each robot is originally equipped. All eight agents are assumed
to be identical with radius p = 1 and local field region width
0 = 0.2. The motion of an agent is described by the motion of
its center: z; = [z; y;]!, 9 =1,...,8. The centers are directly
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In Fig. 21, eight robots are confined in a box with very
little room to move. The goal is for D1 to move to C9. The
robots collectively reach a solution that efficiently utilizes free
space. The robots solve the problem by keeping the center robot
stationary, with the remaining robots rotating around it until D1
reaches its target.

Case 6—CRF Field Strength and Deadlock Prevention: In
the following example, the importance of the circulating fields
for conflict resolution is demonstrated. Here, a group of eight
agents is required to hold its position, except for D8 which is
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Fig. 22. DI1-D7 hold positions, D8 moves to C8, no circulating fields.

required to move to C8. No circulating fields are used in Fig. 22.
As can be seen, while D8 managed to pass the first group
of agents, it became trapped in a deadlock formation when it
attempted to pass the second group. In Fig. 23, circulating fields
are added. As can be seen, DS is able to reach its target, and the
remaining agents maintain their original positions.

Case 7—Planning in Unknown Environments: In Fig. 24,
two robots are required to exchange positions. The robots are



MASOUD: CONTROL FOR INDIVIDUALLY MOTIVATED MOBILE AGENTS IN A CLUTTERED ENVIRONMENT 387

F1

®6
@6
®6

®®

N

®
R

®
699
®

F2

®

®
e

®0

3

®
@®
©)

®
A%

®

F3

®
e®
®

®®
@@

3

®
®@®

®
99
®
®

F4

®
®

®
©
9.
®@@E

®
@@

F5

®
®
®
99

©
®

M
-
=

®@

@@
®

F6

F12

®
®6
®06

®E
®

Fig. 23. D1-D7 hold positions, D8 moves to C8, circulating fields present.
F1 o F2 F3
[} o
O O
F4 F5 F6
o o
@ @ OU
F7 F8 F9
]
]
o\®
F10 F11 F12
@ @ @
(] . )
F13 F14 F15
e /9,
Q) || L @),
]
F16 F17 F18 o
]
]
m
[
O) || ©) (©)

Fig. 24. Two robots exchanging positions

environment.

in a cluttered,

unknown

@

Workspace with tight passages.

©)

Fig. 25.

PRF-2, HPF

Fig. 26. PRF components, HPF-based EHPC.

not a priori aware of each other or of their surroundings. The
only information they have prior to initiating action is their
target locations. While the PRF fields in the previous examples
are built using simple behavioral primitives, here EHPCs are
used to build the PRFs. As can be seen, despite each agent’s
total lack of knowledge about its environment or the other
member sharing the space with it, each manages to successfully
reach its target from the first attempt in a conflict-free manner.

Case 8—Fuailure With Tight Passages: While the third con-
dition of (23) is by no means stringent, there are environments
with tight passages that have only room for one robot at a
time. In such a situation, there are no guarantees that the
multiagent planner will function properly. Below is an example
demonstrating such a situation.

Consider the workspace in Fig. 25. Two robots D1 and D2 are
required to exchange positions. As can be seen, the passages
in () are not wide enough for the two robots to pass at the
same time.

Fig. 26 shows the harmonic potential field (HPF)-based
PRFs for both D1 and D2. Fig. 27 shows, using snapshots,
the locations of the robots that are generated by the multi-
agent controller at different instants of the solution. As can
be seen, an unresolvable conflict arises between D1 and D2.
One way to remedy this situation is to mark a tight passage
as a one-way street (i.e., constrain motion in such passages to
become unidirectional). This may be accomplished by using the
NAHPF-based EHPC scheme. The solution, its advantages and
drawbacks are discussed in [49].

Note on complexity: Analysis of provably correct geo-
metric multiagent-planning methods shows that the problem
has a complexity that exponentially grows in the number of
agents. On the other hand, the complexity of the AL-based
method suggested in this paper is linear in the number of
agents enabling the method to handle planning for large groups
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in real-time. The reason for such a dramatic difference in
complexity has to do with the action selection mechanism used
by each approach. Geometric planning methods rely on search
as the basis of action selection; the AL approach uses evolution
instead. To construct a multiagent AL-based controller, one has
to construct a self-controller (G-type controller) for each agent
individually in a manner that conforms to the AL guidelines.
The multiagent controller that is steering the group (P-type
controller) evolves as a result of the interpretation of the G-type
control in the context of the environment. In other words, the
multiagent controller is computed in a soft costless manner
by the process of morphogenesis. It is obvious from the above
that the computational effort that has to be dispensed in con-
structing the multiagent controller is equal to the sum of the
effort needed for constructing the G-type controller for each
agent.

VII. CONCLUSION

This paper has described the construction of a conditionally
complete decentralized motion planner for agents sharing a
workspace with unknown stationary forbidden regions. A de-
finition for decentralization that emphasizes the autonomy of
the individual agents in terms of data acquisition, information
processing, and motion actuation is used as the guide for
the development of the controller. The suggested multiagent
controller is found to have several attractive properties such as
its ability to generate online the additional information needed
to execute a successful action. It is also noted that the con-
troller exhibits intelligent dispatching capabilities that enables
it to redistribute the task of conflict evasion on the properly
functioning agents. This property provides significant robust-
ness in the case of sensor, or actuator failure. The controller
employs an idea from the AL approach to behavior synthesis
that is of central importance for the controller to achieve the
above capabilities: i.e., the ability to project global useful
activities through simple local interacting activities without
the agents, necessarily, being aware of the generated global
behavior. The AL G-type and P-type control modes do support

such a behavior synthesis paradigm and may be considered as
the backbone for building effective decentralized controllers.
The work has also presented the potential field approach as a
powerful tool for generating control fields that are particularly
suited to constructing intelligent, decentralized controllers.

It is important to notice that completeness of an algorithm
does not exist in an absolute sense. A complete algorithm or
procedure is only correct provided that certain assumptions
are upheld. For example, a planner that is guaranteed to find
a trajectory for a robot to a target zone may no longer be
provably correct if the implicit assumption on the path being
only continuous is no longer enough (e.g., path differentiability
is required). What makes a complete algorithm useful is the
practicality of the conditions under which completeness is
obtained. In this paper, completeness is achieved provided that
the linear, isotropic workspace the agents are sharing supports
bidirectional movements (i.e., two-way streets). This author
believes that this assumption is practical and does yield a
demonstrably useful planner.

It ought to be kept in mind that the main motive for adopting
a decentralized planning strategy is to meet the stringent re-
quirements a large-scale mobile robotics system has to satisfy
in order to have a reasonable chance of success operating in a
realistic environment. As the simulation results clearly reveal,
a decentralized planner constructed in accordance with the
AL guidelines, possesses several important properties needed,
among other things, for combating the adverse effect of hard-
ware and/or software failure likely to occur in a large-scale
system. They are also important in bringing the complexity of
the planning task under control. In attaining these properties,
fundamental assumptions were made. One of these assumptions
has to do with the restriction of the amount of data available for
the agents to base their decision on. While this assumption is
needed for operation in a decentralized mode, it may have some
drawbacks. It is a well-known fact that the more information
used to project an action the better is the quality of the resulting
trajectory and the lower is the probability of encountering con-
flict situations. Moreover, in a decentralized mode, resources
have to be duplicated. Each agent has to be equipped with data
acquisition, data processing, decision making, and motor action
modules in order to be able to operate in a decentralized mode.
Compared to centralized systems where only the supervisory
agent has all these faculties while the remaining agents have
only relatively inexpensive motor units for executing the super-
visor’s commands, decentralized systems are more expensive to
implement. While decentralized control is an attractive choice,
in small and medium scale systems one may want to consider
the centralized control option. With reliable technology, the
chance of component failure is low. Moreover, with advances
in computer technology, data processing and decision-making
algorithms, data acquisition, and processing as well as planning
can be done in a reliable and fast manner.

The author believes that the multiagent controller prototype
suggested in this paper will serve as a good basis for developing
other multiagent controllers. Future work will focus on condi-
tioning the differential properties of the generated trajectories,
incorporating dynamics, and generalizing the shape of the
agents from that of a simple sphere to more general shapes.
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