EE 432-1 Digital Control Systems, Major-1

Wednesday, November 23rd, 2007, 11:00AM - 12:30 PM Dr. Ahmad A. Masoud

Q1:

a- (2 marks): the discrete system shown below has the discrete impulse response h_{i} and discrete input x_{i}. Compute its output y_{i}.

$$
h_{i}=\left[\begin{array}{cc}
i & i=0,1,2 \\
0 & \text { elsewhere }
\end{array} \quad x_{i}=\left[\begin{array}{cc}
1 & i=0,1 \\
0 & \text { elsewhere }
\end{array}\right.\right.
$$

b- (2 marks): consider the discrete system with the following difference equation:

$$
y_{i}=1.429 \cdot y_{i-1}-0.571 \cdot y_{i-2}+.143 \cdot u_{i}
$$

where y_{i} is the output of the system and u_{i} is its input. Assume that he input to the system is a discrete impulse $\left(\mathrm{u}_{\mathrm{i}}=\delta_{\mathrm{i}}\right)$. Determine the output when the discrete time goes to infinity: $\lim _{i \rightarrow \infty} y_{i}$.

Q2: Let $\mathrm{x}_{\mathrm{i}}=\mathrm{Z}[\mathrm{X}(\mathrm{Z})]$ be a Z -Transform pair,
a- (2 marks): for $X(Z)=\frac{10 \cdot Z+5}{(Z-1)(Z-.2)}$ use long division to obtain the first three terms of x_{i},
b- (2 marks): for $X(Z)=\frac{10 \cdot Z}{(Z-1)(Z-.2)}$ use long partial fraction to obtain a formula for x_{i},
c- (2 marks): use the Z-Transform pairs:

$$
y_{i}=5 \cdot \delta_{i}+1.25-6.25 \cdot(0.2)^{i} \quad Y(Z)=\frac{1}{Z^{2}-1.2 Z+0.2}
$$

Find the inverse Z-Transform of : $Y(Z)=\frac{Z^{2}}{Z^{2}-1.2 Z+0.2}$
Q3: Consider the following simulation diagram with three delay registers (DR-1, DR-2, DR-3):

a- directly use the simulation diagram to write the discrete state space equations of the system shown above,
b- if the following numbers are initially stored in the delay registers: $\mathrm{DR}-1=1, \mathrm{DR}-2=0, \mathrm{DR}-3=1$, and the input is zero ($\mathrm{Un}=0$), compute Y_{3}.

