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Abstract- Reliability and throughput are two important as- 
pects of data communication systems. Various error control 
strategies such as FEC, ARQ, and hybrid ARQ schemes can be 
used to enhance system performance. For time-varying channels, 
the optimum solution is to adaptively match the rate of the error- 
correcting code to the prevailing channel conditions. A simple and 
efficient system utilizing the well-known class of Hamming codes 
in a cascaded manner is proposed to provide high throughput 
over a wide range of channel bit-error probability. Comparisons 
with other adaptive schemes indicate that the proposed system is 
superior from the point of view of throughput, while still provid- 
ing the same order of reliability as an ARQ system. The main 
feature of this system is that the receiver uses the same decoder 
for decoding the received information after each transmission 
while the error-correcting capability of the code increases. As a 
result, the system is kept to the minimum complexity and the 
system performance is improved. 

I. INTRODUC~ON 

ASICALLY, there are two fundamental techniques for er- B ror control; automatic repeat request (ARQ) and forward- 
error control (FEC) [l], [2]. The former employs pure error 
detection, while the latter employs error correction only. To 
evaluate their performance, two important parameters are 
defined: throughput and reliability. 

Throughput is defined as the ratio of the average number 
of information bits successfully accepted by the receiver per 
unit time, to the total number of bits that could be transmitted 
per unit time [2]. 

Reliability is a measure of the correctness of the decoded 
data. 

An FEC system provides a constant throughput efficiency, 
set by the code rate, regardless of the channel conditions. 
However, as the decoded word must be delivered to the 
user regardless of whether it is correct or not, the system 
reliability falls as the channel degrades. On the contrary, an 
ARQ system, incorporating powerful error-detection codes, 
can provide high system reliability, reasonably independent of 
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the channel quality, but the throughput depends strongly on the 
number of requested retransmissions, i.e., on channel quality, 
and therefore falls rapidly with increasing channel error rate. 
A proposed system which can have the advantages of both 
and disadvantages of neither is termed “hybrid ARQ.” Such 
schemes can be broadly classified as follows [3]. 

1) Type-I hybrid ARQ scheme. 
2) Type-I1 hybrid ARQ scheme. 
Type-I ARQ scheme employs one code for error correction 

(FEC) and another code for error-detection (ARQ). At the 
receiver, the decoder first attempts to correct any error in 
the received block, then the decoded block is tested for error 
detection. If no errors are detected the message is delivered 
to the user, otherwise the receiver requests a retransmission 
of the same block. As error correction is always based on 
the same code, this scheme may be referred to as “fixed-rate 
hybrid ARQ.” 

Fixing the rate of the error-correcting code has drawbacks 
for channels having nonstationary behavior. If the channel is 
fairly good, the redundancy in the system may be more than the 
optimum value. On the other hand, if the channel is bad, more 
errors are expected to occur than those which can be handled 
by the capability of the error-correcting code. Consequently, 
too many retransmissions are requested, and the throughput 
falls down. Thus, in order to achieve optimum performance, 
the rate of the error-correcting code should be matched to 
the prevailing channel conditions. This forms the basis of 
Type I1 hybrid ARQ [3], or adaptive ARQ schemes. The first 
Type-I1 hybrid ARQ using a parity retransmission strategy was 
proposed by Metzner [4]. Among all the Type-I1 hybrid ARQ 
schemes that have been reported, the scheme proposed by Lin 
and Yu [3], [5] is the most analyzed. 

Krishna and Morgera [6] were able to generalize the system 
proposed by Lin and Yu by discovering one class of linear 
codes, referred to as KM codes, after their names. The overall 
system is referred to as the “generalized hybrid ARQ scheme 

GH-ARQ Scheme: The GH-ARQ scheme also uses two 
codes; one is a high rate (n ,  I C )  code CO which is designed for 
error detection only, and the second is the code C1 which is 
used adaptively for error correction. The code C1 is an (mn, n)  
KM code having distance d, and the integer m is referred to 

(GH-ARQ).” 

0090-6778/91/0700-1049$01.00 0 1991 IEEE 

.- ~ _ _  



1050 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 39, NO. 7, JULY 1991 

as the depth of the code. This code is designed to possess the n Bits 

A code is said to be invertible if, knowing only the parity bits 
of a codeword, the associated information bits can be uniquely 
determined. Note that the code Cim) is the code C1. 

The receiver erforms error correction on the basis of the 
codes Ci2), Cl3', . . . , Cim-'), C,, C1, . . . , having distances 
d 2 ,  d ~ ,  . . . , d m - l ,  d ,  d ,  1.. Thus, with each retransmission, a 
code having a larger distance, i.e., a greater error-correcting 
capability, is used until the code C1 is reached. The reader is 
referred to [6] for a detailed description and analysis of the 
GH-ARQ system. 

The generalized scheme achieves adaptation by severely 
penalizing the code rate. The code rate is reduced from R 
to R / 2  in only one step of adaptation. The newly discovered 
KM codes, due to their nature of construction, cannot provide 
smoother adaptation. 

This paper introduces the use of the well-known Ham- 
ming codes in a cascaded fashion to perform adaptation. The 
proposed system possesses two main advantages. 

1) The decoding strategy of the receiver is able to use the 
essential simplicity of decoding Hamming codes. 

2) In general, the proposed system can employ any Ham- 
ming code, thus reduction in rate required for adaptation is 
more gradual. 

11. CASCADED HAMMING CODES 

Consider a sequence of bits of length n. We refer to those n 
bits as being of zeroth level of cascading, in the sense that they 
are as yet uncoded for error correction. These bits may now go 
through one or more stages of encoding as discussed below. 

A. Encoder 

A particular ( N , K )  Hamming code is adopted for error 
correction. The n information bits are divided into groups of K 
bits. Each set of K bits is then mapped into N bits by means of 
an (N, K) Hamming encoder. The total number of bits at this 
stage is ( n / K ) N .  This stage is referred to as the first level of 
cascading. The second level of cascading is formed by sorting 
the ( n / K ) N  available bits into groups of K bits again. These 
bits should constitute ( n / K 2 ) N  such groups. Each group is 
again encoded into N bits by the same encoder. At the end 
of this stage, there should be ( n / K 2 )  N 2  = ~ L ( N / K ) ~  bits. 
Continuing this process, any level of cascading can be reached. 
Fig. 1 illustrates this process for two levels of cascading. To 
obtain an integer number of subblocks after each division by 
K at any stage, the initial sequence should be of length K" 
or any integer multiple of K", where m is the maximum 
intended level of cascading. 

S o r t  into 
blocks of  K b i t s  , tEz\N, Encode into 

n(N/K) * 

Fig. 1. Encoding for two levels of cascading. 

B. Decoder 

Now suppose that the receiver receives a sequence of bits 
which are known to have been encoded to the mth level. Let 
the channel bit error rate be E. The receiver considers the 
received bits as blocks of N bits, and computes the syndrome 
of each block to perform error correction. After completing 
the first-order check, the receiver discards the check bits 
leaving the K information, but now with a different bit error 
probability, say E' .  It can be shown that the bit error probability 
after decoding is the same for all N positions in the block and 
discarding the check bits does not alter the error probability 
per position for the information bits [7]. The remaining bits 
correspond to the (m - 1)th level of cascading. The receiver 
again divides these bits into blocks of N bits, checks for 
errors in each block, and discards the check bits. In this way, 
another level of cascading is decoded, where each decoded bit 
has a bit error probability E". This process is continued until 
the receiver decodes the original n information bits. Fig. 2 
illustrates the decoding process for two levels of cascading. 

C. Decoded Bit Error Probability 

When a received word is decoded incorrectly, it does not 
mean that every decoded bit is erroneous. A decoded codeword 
is wrong whenever at least one bit is wrong. A useful quantity 
to calculate is the bit error rate after decoding E', when the 
channel bit error rate is E .  For an (N, K) Hamming code, it 
is shown in Appendix A that 

1 N 
E' = 1 [(i + 1) ( 7 )  - Ai - 2Ai- l (N - i + 1) 

N i=o 

(1) . & i ( l  - 

where Ai is the number of codewords of weight i. Fig. 3 shows 
E' versus E for the first three Hamming codes (7,4), (15, ll), 

- I-- 
- __ 

- 



KOUSA AND RAHMAN: AN ADAPTIVE ERROR CONTROL SYSTEM 1051 

2 
n(N/K) 

check can never correct them. The solution to this problem is 

I n b i t s  I 
Fig. 2. Decoding of two levels of cascading. 
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Fig. 3. Decoded bit error rate compared to channel bit error rate for three 
Hamming codes. 

and (31,26), which shows a considerable reduction in the bit 
error rate due to coding. 

where E’ is given by (1). Thus, (1) can be used recursively, 
where E is the bit error probability after decoding from the 
previous level. The required interleaving for three levels of 
cascading is established in Fig. 4 for the (7,4) Hamming code. 
At the receiver side, a corresponding deinterleaving operation 
must be done. 

E. Probability of Correct Decoding of a Cascaded System 

If K bits are to be transmitted through a BSC having a bit 
error rate E ,  then the probability of receiving them correctly 
is equal to 

(1 - E ) K .  (3) 

If, on the other hand, an (N, K )  Hamming code is employed, 
then the probability becomes 

(1 - E ) ~  + N E (  1 - (4) 

Now suppose that we use two levels of cascading. At the 
receiver, after the first decoding step, the bit error rate will re- 
duce to E’ .  Due to interleaving, we obtain N such independent 
bits. The probability of correct decoding of a block after the 
second decoding step is then given as 

(1 - + Nc’(1 - ( 5 )  D. Interleaving 

We claim that if the selection of K bits for a subblock is 
done carefully at each stage, then any further cascading leads 
to a higher error-correction capability of the system. 

The simplest choice for the second level of cascading would 
be to take adjacent K bits at a time as a block. This is 
guaranteed not to work because the second-level checking 
(decoding) can never give correct decision unless the received 
sequence is error-free or contains exactly one error per block; 
in both such cases, there is no need for further cascading at all. 
On the other hand, if there are errors left in this group of bits 
after the first-order check (which is always the case when the 
channel introduces more than one error per block), there will 
be at least three errors per block. Most of the errors left will 
be confined to the information section, and the second-order 

If three levels of cascading are in use, then the probability of 
correct decoding of one block of N bits is given by 

(1 - E ” ) ~  +  NE"(^ - E ” ) ~ - ’  (6) 

where E” is obtained from (2). This technique applies to any 
level of cascading under the condition of perfect interleaving. 

The previous discussion takes one block of N bits into 
consideration. In principle, for any level of cascading, if one 
starts with n bits, then just before the final step of decoding 
there should be n / K  blocks of N bits to be decoded. 

Let pc,+ denote the probability of correct decoding of the 
superblock (the block of n / K  subblocks), when the bits are 
encoded for level i. 
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t t l l  Fin1 level of e n d i n g  

ii 0 Check bit of level 1 

Check bii of level 2 

Chefk bit of level 3 

Scfond level of mcading 

d level of encodrng 

I 1 4  I 1 0  I 
To be 

Fig. 4. Interleaving for three levels of cascading using the (7,4) Hamming code. 

Then, for m = 1 

This follows from the fact that all n/K subblocks are com- 
pletely independent. Unfortunately, this is not the case for m > 
1 because although all N bits in one block are independent, 
bits in different blocks are dependent on each other due to 
past decoding steps. The probability of correct decoding of 
the superblock cannot be obtained simply by multiplying the 
individual probabilities of subblocks. One solution to this 
problem is to use the following union bound. 

If 

p ,  f probability of correct decoding of a subblock 
Pc = probability of correct decoding of the superblock 
p ,  = 1 - p ,  3 probability of wrong decoding of a subblock 

PE probability of wrong decision of the superblock 
then 

I pL: + Pe * . . + p e  = (n/K)Pe 

and Pc 2 1 -PE.  
Applying this bound to the case m = 2 yields 

P c , ~  2 1 - "{ 1 - [(I - E ' ) ~  + Nc'(1 - E ' ) ~ - ' ] } .  (8) K 

The tightness of the union bound depends on the value 
of p ,  and the number of subblocks n/K.  In so far as this 
investigation is concerned, the union bound was found to be 
satisfactory for most cases. It should be emphasized that the 
value of PC obtained by the union bound as above will be 
a conservative estimate and the actual value will always be 
superior. 

111. ADAPTIVE ARQ SCHEME BASED 
ON CASCADED HAMMING CODES 

If the cascaded system is to be employed in a hybrid 
ARQ scheme, the initial bit sequence (n) should have some 
redundant bits for error detection based on an ( n , k )  error- 
detection code CO. This is the only requirement for a message 
in its first transmission. When the receiver detects the presence 
of errors in a received word, it saves the erroneous word 
in a buffer, and at the same time requests a retransmission. 
The retransmission consists of a superblock of parity-check- 
bit subblocks, which is based on the original message and a 
Hamming error-correcting code at the first level of encoding. 
When this superblock of parity-check bits is received, it is 
used to correct the errors in the erroneous word stored in the 
receiver buffer. The decoded block is checked for errors by 
the error-detecting code. If error correction is not successful, 
the receiver stores the first-level parity-check bits also and 
requests a second retransmission. The second retransmission is 
another superblock of parity-check bit subblocks based on the 
original message, the first-level check bits already stored at the 
transmitter, and the same error-correcting code. Appropriate 
interleaving before encoding and deinterleaving after decoding 
are assumed. When this block of second-level check bits is 
received, it is again used to correct the erroneous message 
stored at the receiver. This process is repeated if necessary 
until the mth level parity-check bits are transmitted. If NAK 
is still sent back, the next transmission should be the initial 
information sequence again. The receiver will automatically 
replace the old information bits by the new ones and try 
to decode the message with the help of all parity checks 
already available. If an NAK is again received, the next 
transmission is the same as the first retransmission, containing 
the first level of panty checks, and so on. Doing this, the 
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sequence of retransmissions for successive NAK's will be 
I ,  P I ,  Pz, . . . , P,, I ,  PI where I is the original n-bit message 
and P; is the ith level parity subblock. After the (2m)th 
retransmission, the whole set will have been renewed. With 
the reception of parity bits at the ith level, i = 1 ,2 , . . .m ,  
the decoder is required to rearrange the information sequence 
and the parity bits up to the (i  - 1)th level, in order to be 
consistent with the interleaving operation by the encoder. 

The cascaded coding scheme described here has much in 
common with the notion of multidimensional product codes. 
In general, IPlP2 . .Pm would represent a codeword in an 
m-dimensional product code, where Pi represents parity bits 
on IPlP2 . .P;-1. However, the number of these parity 
subblocks to be transmitted depends on transmission errors. 
Under the best circumstances, none are transmitted and only I 
(which includes the error-detecting code) is transmitted. Thus, 
the basic difference between the proposed coding scheme and 
a conventional product code lies in the variability of the 
dimension of the product code, ranging from zero (no FEC 
coding) to some value m. 

It should be noted that this system transmits blocks of dif- 
ferent lengths. This may introduce some complexity increase 
relative to transmission of equal block lengths. 

A. Reliability 

Reliability, as defined earlier, is a measure of the correctness 
of the received data. Let P ( E )  denote the probability that the 
received word is accepted and it is in error. To have a highly 
reliable system, the error-detection code incorporated should 
be properly chosen to make P ( E )  very small. In any ARQ 
system, P ( E )  is given by [2] 

Pud P ( E )  = ~ 

Pud + Pf 
where 

Pud s probability of an undetected error in the receivedl 

Pf s probability that the receivedtdecoded n-bit word is 
decoded n-bit word error pattern 

error free. 
To make P ( E )  very small, Pud should be very small compared 
to P f .  A simple, yet tight, bound on Pud which is obeyed by 
many classes of codes is given'as [8] 

(9) 

This bound is a simplified version of a bound by Korzhik [9]. 
Some classes of codes satisfy the even tighter bound [lo] 

Pud 5 2-("-"[1+ (1 - 2 q  - 2(1 - 47. (10) 

If a code satisfying one of the above bounds is used for error 
detection, the probability of an undetected error can be made 
very small by using a moderate number of parity bits, say 20. 

For the proposed cascaded system, requiring an initial 
stream of K" bits or any multiple of this length puts a 
constraint on the length of the (n,IC) error-detecting code. 
To satisfy this constraint, an (aKm, I C )  code must exist a 
being an integer. This condition can be satisfied almost always, 
and here is the justification: for most practical channels two 

levels of cascading is adequate, and further cascading does 
not result in any significant improvement. If the codeword 
length of the chosen ( N ,  K )  Hamming code is not too long, 
K" will be small compared with the length of an efficient 
error-detecting code. To satisfy the above condition, take an 
integer multiple of Km such that an (aKm, I C )  error-detecting 
code can be constructed. Due to the various families of already 
existing error-detecting codes, this condition can be sometimes 
satisfied, but not for the majority of cases. For these cases, 
the condition can be satisfied by making use of the theory of 
extended or shortened codes [ll]. An error-detection code of 
a suitable length can be constructed as follows: Choose a such 
that aKm is nearest to n, the length of an error-detecting code 
CO. One of following two cases arises. 

1) aK" < n: For this situation, shorten the code CO by 
omitting (n  - aKm) of its message digits. This way, 
we modify the code (n,  I C )  to the code (aK", IC - n + 
aK"). 

2) aK" > n: For this case, we extend the code CO by 
annexing (aK" - n) additional check digits and the 
modified code will be an (aK", I C )  code. 

In the first case, no general statement can be made regarding 
the capability of the error-detecting code. If the number of 
deleted message bits is small, Pud of the shortened code may 
be expected to be of the same order as the original code. 
However, an investigation of the Pud of the shortened code 
will have to be made before its selection as the error-detecting 
code. In the second case, the error-detection capability is 
enhanced, and the extended code is guaranteed to be at least 
as good as the original code. It was possible to modify the 
code at the cost of reducing its rate. If n is sufficiently large, 
which is usually the case, and if aK" is not that far from n, 
the reduction in the rate is negligible. 

Here are some possible choices of the error-detection code 
for two levels of cascading (m = 2): 

(7,4) Hamming code, a = 128. All extended primitive 
BCH codes of lengths 2e, 1 2 4, are suitable. Two 
good examples are the distance-8 (2048,2014) and the 
distance-6 (2048,2025) BCH codes. Both codes satisfy 
the bound given by (10) [l l] .  P ( E )  is kept below 5.8 x 

for the two codes, respectively. 
Keeping in mind that this is the case of the worst 
possible channels ( E  = 0.5), high system reliability can 
be achieved. 
(15, l l )  Hamming code, a = 17. The suitable length of 
the code is 2057. Any one of the BCH codes introduced 
in the last paragraph can be used by annexing nine more 
check bits. P ( E )  will be even smaller than the above 
calculated figures as a result of adding more check bits. 
(31,26) Hamming code, a = 6. Then n should be 4056. 
Distance-6 (4096,4072) BCH code can be shortened to 
the (4056,4032) code by deleting 40 message bits. The 
upper bound of P ( E )  is expected to be of the order of 
2-24 = 6 x 10-l'. The reduction in the rate of the code 
is negligible. 

and 1.2 x 

It should be emphasized that the overall system reliability 
depends on the undetected error probabilities of both the 
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cascaded coding scheme and the embedded error-detection 
code. While both contribute to the overall reliability, it is the 
error-detecting code which has the primary role of the ensuring 
acceptable reliability. Therefore, a proper choice of this code 
is crucial for the success of the proposed hybrid ARQ scheme. 

B. Throughput Analysis 

We assume that the forward channel is a random error 
channel with bit error rate E ,  and that the feedback channel is 
noiseless. Since selective repeat (SR) ARQ is the most efficient 
ARQ scheme, we consider the throughput of cascaded systems 
in the SR mode. The throughput of such a scheme depends on 
the receiver buffer size and, in this regard, we restrict our 
attention to the infinite buffer case. In order to calculate the 
throughput, we determine the average number of bits needed 
to be transmitted before IC information bits are successfully 
accepted by the receiver. If we denote this number by T, then 
the throughput 7)  is 

Upon the ith retransmission, i = 0 , 1 , .  . . (where i = 0 
refers to the first transmission), let Ec,i be the event that the 
receiver recovers the block correctly; E d , i  will be the event 
that the receiver detects the presence of errors, and requests 
the next retransmission; E+ will be the event that the receiver 
cannot detect the presence of errors. Clearly, 

Pr(Ec,i) + Pr(Ed,i) + Pr(E,,i) = 1, i = 0 , 1 , 2 , .  . . . (12) 

We will assume that Pr(Ee,i) = 0. Then, we can write 

T = [n(O)] Pr(Ec,o) + [n(O) + n( l ) ]  Pr(Ed,oEc,l) + . . . 
+ [n(O) + n( 1) + . . . n(i)] 
. Pr(E,j,oE,j,l . . . Ed,i-lEc,i) + * (13) 

where n(i ) ,  i = 0 , 1 , .  . is the length, in bits, of the ith 
retransmission. 

This expression involves the probability of joint events. The 
probability of the event Ec,i, for example, depends on the 
probability of all the events Ed,OEd,l  . Ed,i-l. This form 
of unlimited dependency on past events is extremely difficult 
to analyze. We, therefore, adopt the following inferior system 
approach for further analysis. 

C. Definitions of Inferior System 

The system for analysis is defined in the following way. Up 
to the mth retransmission, the system is exactly the same as 
we have defined before. If an (m + 1)th retransmission is still 
required, the receiver discards all bits available to it, and sends 
a NAK. Due to the reception of this message, the transmitter 
will send the complete set already stored in the buffer. This 
set contains the information data plus the parity-check bits 
of all m levels. Subsequent retransmissions also constitute 
the entire message and parity bits up to the mth level. 
The sequence of retransmissions will be I, P I ,  Pz, . . . , P,, 

0 8 0 4  

0.00 
1E-06 1 E-05 

I I 

0 4  I E 4 3  1 E-01 
r. 

Fig. 5. Throughput of the GH-ARQ system compared with the cascaded 
system for three Hamming codes. 

(I + Pl + Pz + ... + Pm), ( I  + Pl + P2 + * * .  + P,),..., 
assuming successive NAK's. 

It is clear that this system is inferior to the original system. 
In simple words, after the mth retransmission the inferior sys- 
tem renews the whole set without performing any intermediate 
decodings, whereas the original system renews the data part 
by part, and performs decoding at each stage. Obviously, we 
need not renew the whole set to have a successful decoding. 
The ease of analysis of the inferior system is evident. The 
most tedious calculation involved in this case will be that of 
the evaluation of Pr(Ec,,) and this event depends on the 
previous m events only. The throughput of the inferior system 
is shown in Appendix B. 

D. Comparison Between the Proposed System and 
the GH-ARQ System 

Comparison is made with the GH-ARQ system because of 
its superiority over other ARQ schemes. We will make the 
comparison up to two levels of adaptation, i.e., two other 
retransmissions (of parity bits) will be used to enhance a first 
transmission, before the transmission of data is repeated again. 
In our notation, this corresponds to m = 2. For the notation 
used by Krishna and Morgera, it corresponds to m = 3. For 
a valid comparison, the error-detection codes used in the two 
systems should be of the same length and rate. The rate of 
the error-detecting code, being close to unity, is ignored in 
the derivation. The length of the error-correction code used 
imposes a constraint on the length of the error-detecting code, 
which makes it not possible to assume the same length of 
the latter, but the lengths are chosen to be nearly the same 
in all cases so that the comparisons are meaningful. The 
chosen lengths n satisfying the constraints are 1344, 1331, and 
1352 b for the (7,4), (15, l l ) ,  and (31,26) Hamming codes, 
respectively. If the (15,5,5) Kh4 code is to be used in the 
GH-ARQ system, a convenient length of the error-detection 
code is 1340 b, which is close to the length chosen for the 
proposed scheme. 

Fig. 5. compares the GH-ARQ system to the proposed sys- 
tem for three Hamming codes. It is evident that the proposed 
system allows higher throughput than the other system, espe- 
cially for (15 , l l )  and (31,26) codes. It should be remembered 
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that the comparison is being made not on the basis of the 
actual throughput, which is very difficult to evaluate in both 
cases, but on the lower bounds on the throughput. As the 
derivations of the throughput for each system are subject to 
different kinds of bounding arguments, one cannot guarantee 
that the bounds on the two systems are of the same degree 
of tightness. However, the throughput curves for the (31,26) 

APPENDIX A 
DERIVATION OF A GENERAL EXPRESSION FOR THE DECODED 

BIT PROBABILITY OF ANY (N,K)  HAMMING CODE 

The approach adopted here is to find the average number 
of errors in the decoded codeword subject to i errors in the 
received word, which is denoted by xi. As all N bits of the 

and (15,11) codes lie so far above the Curve for the GH-ARQ 
system that there is every reason to believe that the system 

decoded word have the Same probability to be in error, the 
bit error rate can be found by dividing by N .  '' is then 

proposed here is superior to the GH-ARQ system from the 
point of view of throughput. 

defined as 

IV. CONCLUSION 

In a GH-ARQ system, whenever a retransmission is required 
the transmitter sends a block of parity checks of the same 
length as the block of message bits. It follows that the first 
retransmission causes the rate of error correction code to drop 
to 1/2. The second retransmission makes the rate 1/3, and 
so on. This is considered a drastic drop in the rate and a 
request for a retransmission may not justify such a drastic drop 
in the rate. On the other hand, after the first retransmission 
in the proposed system, the rate drops to ( K I N ) ,  the rate 
of Hamming code in use. The second retransmission reduces 
the rate to (K/N) ' ,  and so on. If the moderate rate (31,26) 
Hamming code is used, three levels of cascading can be 
reached before reducing the rate to 1/2. From our previous 
observations, we can say that even two steps of adaptation 
is adequate to cover the worst practical interval of E .  The 
superiority of the proposed system lies in its ability to adapt 
its rate much more smoothly compared to the GH-ARQ 
system. 

The above comments are valid under the conditions stated in 
the derivation, i.e., SR mode and infinite buffer size. For these 
conditions, a gradual change does not introduce any further 
delay over a sharp one. For other conditions, such as different 
retransmission model and/or finite buffer size, the throughput 
comparison given here is not valid and requires a detailed 
analysis. 

There is one more advantage which the proposed system 
can provide. Since there are many choices of Hamming codes 
with different rates, an optimum one may be chosen to match a 
certain channel to provide the best adaptation. Also, decoders 
for Hamming codes are trivially simple. 

On the other hand, the proposed system introduces some 
complexity to the transmitter and receiver. It needs a circuitry 
for the interleaver at the transmitter and deinterleaver at the 
receiver. These two blocks are not required for the GH-ARQ 
system. In view of the advances in solid-state technology 
which are taking place, this may not be a severe drawback. 

Another drawback arises from observing that the transmis- 
sions in the proposed system are of unequal blocks lengths as 
compared to equal block lengths in a GH-ARQ system. Equal 
block length transmissions may be more convenient and may 
require less overhead control bits. In addition, a GH-ARQ 
system has more flexibility in the choice of the error-detection 
code. 

where 
xi the number of errors in the decoded word due to i 

error patterns 
Pi probability of exactly i errors in a block of N bits, 

The summation starts from i = 2 because xo = x1 = 0 for 
single error-correcting codes. 

Let A, represent the number of codewords of weight i. If 
the received vector contains i errors, then one of the following 
three cases occur. 

i) It is the same as one of the Ai codewords of weight i ;  in 
this case, no additional errors are introduced, 

ii) It is at a distance 1 from one of the Ai-l codewords of 
weight i - 1; there are (N - i + 1)Ai-1 such received vectors 
and the decoded vector contains ( i  - 1) errors, 

iii) It is at a distance 1 from one of the A;+1 codewords of 
weight i + 1; there are ( i  + l )Ai+l  such received vectors and 
the decoded vector contains ( i  + 1) errors. Thus, we get 

= &i( l  - &)N-- i .  

xi = iAi + (i - 1) ( N  - i + 1)Ai-1 + ( i  + l)'A;+i. 

(A-2) 

Recalling that the weight distribution of Hamming codes 
satisfy the recurrence [12] A0 = 1, AI = 0, 

We can simplify (A-2) as 

xi = ( i  + 1) (r) - Ai - 2Ai_l (N - i + 1). (A-4) 

Substitution of (A-4) in (A-1) yields the required bit error 
probability E' after decoding 

. &i(l  - (A-5) 

T-- 
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APPENDIX B 
THROUGHPUT ANALYSIS OF THE INFERIOR 
SYSTEM FOR TWO LEVELS OF CASCADING 

For m = 2, the following remarks can be made. 
1) Pr(Ec,3) = Pr(Ec,4) = = Pc,2, and, consequently, 

Pr(Ed,3) = Pr(E44) = = 1 - Pc ,2  = Pd,Z. 

2) These events are independent of each other and of 
the previous events. It follows that the average number of 
transmissions, V ,  is 

V = 1 P~(&,O)  + 2 Pr(Ed,oEc,l) + 3 . Pr(Ed,o&,lEc,2) 
+ 4 * Pr(Ed,OEd,lEd,Z)Pc,2 
+ 5 . Pr(Ed,oEd,lEd,2)Pd,2Pc,Z 
+ 6 . Pr(Ed,oEd,lEd,2)Pd2,,zPc,2 + . . . . (B-1) 

Let us evaluate the different probability terms in the equation. 
i) Pr(Ec,o) is simply PC,o given by the equation 

Pc,o = (1 - E ) n .  (B-2) 

ii) Pr(Ed,OEc,l) = Pr(Ec,1 I &,o) %Ed,O). 
Pr(Ec,l I Ed,o)  is the probability of correct decoding at the 

first level, given that an error was detected in the information 
data. This probability is calculated as 

Pr(Ec,1 I &,o) = 
[(probability of correct decoding of this stage) 
- (probability of correctable patterns that could 

not happen because they should have been 
corrected in the in the previous transmission)] 

/ (the probability of patternsthat can occur at this 
stage that can occur at this stage). 

In numerical form, for an ( N ,  K )  Hamming code, it reads 
as follows below in (B-3). If B blocks of K 2  bits are available 
as information bits at the start, they will be independent after 
decoding. Then, see (B-4) below. 

iii) The second joint probability term is 

Pr(Ed,OEd,lEc,Z) = pr(Ed,O) Pr(Ed,l I E d , O )  

. Pr(Ec,2 1 Ed,~Ed, l ) .  (B-5) 

The first term on the right side is (1 - PC,o}. The second 
term is 1 - Pr(Ec,l I E ~ , o ) ,  which can be obtained from (B-4). 
The third term is quite involved, and it is sufficient for our 
purpose to use the bound 

This bound is valid as PC,l is more than what should be 
subtracted from Pc,2. 

iv) The last joint probability term is 

where 

B 
pc,z - Pc,l 

< - { 1 - pc,l } * (B-7) 

To evaluate the throughput of the system, we should cal- 
culate the length of each transmission. In any case, the first 
transmission is of length n. When an ( N ,  K )  Hamming code 
is used, with x = N - K parity check bits, the length of the 
ith retransmission, .&, in bits is given as 

i-1 

. t i = n ( X )  i s m .  

For i > m, the transmitter will transmit (in he case of the 
inferior system) all stored check bits in addition to information 
bits. Thus, 

m 

e i = n ( $ )  i > m .  

In this case, the receiver will depend only on the instantaneous 
received block, and ignore all previous bits. Then, for m = 2 

[(l - &y + N€(l - #-']K - [(l - + ( N  - K)E(1 - & y - l ] K  
Pr(Ec,1 I Ed,O)  = 

1 - (1 - €)K2 

(B-4) lB.  
K 

[(l - + NE(1 - E y - 1 1  - [(l - + ( N  - K)€(1 - &)-IK 

1 - (1 - &)KZ { Pr(Ec,1 I E d , O )  = 
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+ n[l+;+;(;)+(g)”] 
+ n[1+;+;(;)+2(g)2] 

Then the throughput 77 is simply k / T .  
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