
Puncturing effects on turbo codes

M.A. Kousa and A.H. Mugaibel

Abstract: The authors address various important issues related to punctured turbo codes. A
modified technique for finding the transfer function of punctured turbo codes is developed. This
modified technique provides a means of deterministic evaluation of the weight distribution of the
code, as well as a possibility of studying vanous puncturing patterns. These advantages are shown
with some illustrative examples. Moreover, the paper explains some characteristics of the
puncturing pattern, and arrives at useful guidelines for the design of a good puncturing matrix.

1 Introduction

Turbo codes (TCs) demonstrate a, means of closely
approaching the Shannon capacity of a communication
channel. The natural rate of a turbo code with two
component codes is 1/3. Puncturing is commonly used to
yield turbo codes of rates greater than the rate of the mother
code. The need for puncturing arises in other applications as
well. In speech or image compression some bits may be
more significant than others, thus requiring a higher level of
protection. Such unequal error protection can be achieved
by puncturing [l]. Kim et al. [2] present an interesting
scheme that uses punctured TCs to improve the perfor-
mance of a soft handover in wideband CDMA (W-CDMA)
systems. However, by far the most important application of
puncturing is found in type-I1 adaptive hybrid FEC/ARQ
schemes used over time varying channels [2-5].

Puncturing is used in these schemes to generate rate
compatible punctured codes (RCPCs), a family of codes
with different rates, from the same family of encoder/
decoder pairs. Punctured convolutional codes were first
introduced by Cain et ul. [6]. Since then, a set of excellent
papers on the analysis of punctured convolutional codes has
appeared. The paper by Hagenauer [7] is undoubtedly the
most cited paper in this field. As a result of all these efforts,
punctured convolutional codes are now well understood.
The situation is not the same for punctured turbo codes.
Most of the results reported in the literature are based only
on simulation. Some results even contradict each other [8].

T h s paper attempts to provide a better understanding of
the effects of puncturing on the performance of turbo codes.
Our approach is based on a modified technique for the
evaluation of the weights of a punctured turbo code. The
modified technique is shown to yield a more accurate
enumeration of the weight distribution and lead to a tighter
upper bound on the bit error rate of the code. Moreover,
the modified technique facilitates the task of investigating
different puncturing patterns.

0 IEE, 2002
IEE Proceedinys online no. 20020230
DOL 10.1049/ip-com:20020230
Paper first received 1 Ith July 2001 and in revised form 25th January 2002
M.A. Kousa is with the Electrical Engineering Department, King Fahd
University of Petroleum & Minerals, P.O. Box 470, Dhahran 31261, Saudi
Arabia
A.H. Mugaibel is with the Department of Electrical & Computer Engineering,
Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061,
USA

2 Elements of turbo codes

A simplified schematic of the turbo encoder is shown in
Fig. 1. There are two convolutional encoders in parallel.
The information bits are scrambled before entering the
second encoder. The codeword in a turbo code consists of a
frame of input bits followed by the parity check bits from
the first encoder, then the parity bits from the second
encoder, i.e. the augmentation X, X , X , .

Fig. 1 Simplijied turbo-encoder

The convolutional code in every branch is called the
constituent code (CC). The CCs can have similar or
different generator functions. We will concentrate on the
most widely used configuration where the two branches
have the same CC.

Puncturing is usually introduced to increase the rate of
the turbo code. Equivalently, one may use higher rate
component codes. A comparison between these two
approaches is interesting, but is beyond the scope of this
work.

A puncturing matrix P of period p applied to a turbo
code having N output branches can be represented by:

where every row corresponds to one output branch, i.e. the
first row corresponds to the systematic branch, the second
row corresponds to the first parity branch and so on. Note
that glk E (0, l} where 0 implies that the corresponding bit is
punctured. A degree of freedom in controlling the code rate
can be gained by increasing p .

132 IEE Pme. Commun. Vol. 149, No 3, June 2002

If w(.) is the Hamming weight operator, then the rate of
the code after puncturing with the puncturing matrix P is

For the unpunctured case iv(P) = Np and (2) reduces to
R = UN.

3 Weight distribution of unpunctured turbo codes

Evaluation of the perfonnance of turbo codes requires a
knowledge of the weight distribution, which can be
obtained from the transfer function. We outline here the
steps for calculating the transfer function of turbo codes. As
a first step, we review the procedure for finding the transfer
function of the constituent code.

3. I
The constituent code, CC, is the basic building block of the
turbo-encoder. Many researchers have used the (1,5/7 ,5/7)
convolutional encoder for the CCs. It has an excellent
performance compared to other encoders of the same
complexity [9], because of its primitive feedback polynomial.
The derivation that follows is based on thls code, but the
same technique is applicable to any other code.

The encoder of the CC can be represented in many ways.
In Fig. 2, the block diagram, the state diagram and the state
transition matrix of the selected code are shown. The state
diagram is useful to enumerate all paths and their
corresponding weights. In general, the transitions in the
state diagram are labelled with the inputioutput weights of
the corresponding branch. For a systematic code, the labels
may be simplified to inputlparity weights, as shown in
Fig. 2b.

It is convenient to replace each branch label with the
polynomial W" 2, where Wand 2 are dummy variables

Transfer function of the constituent code

information
X1

y2

a

o/o

b

1 o w z o
w z o 1 0

o w 0 2 r A(W,Z) =

L o z o w J
C

Fig. 2 Dflerent representations of the (1,517) encoder
CI Block diagram
b State diagram
c Transition matrix

introduced to facilitate the enumeration of the input weight
and parity weight, respectively. For every branch, M, and z
are either 0 or 1. Using this notation, the information
contained in the state diagram can be transformed to the
transition matrix A(W, Z) shown in Fig. 2c.

For a frame of length k we define the frame transition
matrix F(W, Z) as:

The transfer function can be written in the form
F (W , Z) = A k (n : Z) (3)

T (W , Z) = A,$,,= W"Zi (4)
W.2

where the coefficients A , , , denote the corresponding
multiplicity of the codewords, i.e. the number of codewords
having systematic weight M, and parity weight z. The
transfer function T(W, Z) may be found exclusively in the
(0, 0) element of the matrix F(W, 2) [IO].

For systematic codes, the overall output weight is given
by the sum of the powers w+z. Therefore the weight
distribution function of the code can be found from T(W,Z)
by setting W = Z = H, where H is a dummy variable
whose power is equal to the total weight of the codeword.
The weight distribution function has the form

T (H) = x A h H h (5)
h

where the coefficient A,, is the number of codewords with
Hamming weight h. Of prime importance in the evaluation
of the weight distribution of turbo codes is the conditional
transfer function of the constituent code, T,,(Z). The
function T,,(Z) gives the weight distribution of the parity
sequences that results from a weight-iv input sequence. It is
represented by the summation

Obviously, the transfer function and the conditioned
transfer function are related by

T (w, Z) = W"T,,(Z) = T,,(Z, W) (7)
W I S

where

T,(Z, W) = W"T"(Z) (8)
is the weight distribution of the output for weight-w input.

3.2 Transfer function of turbo codes
Owing to the presence of the interleaver, the transfer
function of turbo codes cannot be found directly. Some
researchers [9, IO] resort to finding the transfer function of
the turbo code from the conditional transfer function using
(7). The condtional transfer function for the turbo code,
T,,, TXZ), can be formulated from the corresponding
functions of the CCs T,,C, (2) and TW,cL (Z) for a particular
interleaver, where the subscripts TC, C, and C2 have been
added to identify the three functions.

The role of a particular interleaver can only be
incorporated by exhaustive enumeration of all possible
input-output pairs, which is a lengthy process for large k.
To overcome this difficulty, Benedetto and Montorsi [lo]
introduced the uniform interleaver, defined as follows: A
uniform interleaver of length k is a probabilistic device that
maps a given input word of weight w into all distinct C
permutations of it with equal probability of l/CL.

The uniform interleaver cannot be used in practice, since
one is required to use a particular random interleaver. It is
not clear in this regard how a uniform interleaver behaves
compared to a random interleaver. In [lo] it was shown that

133 IEE Proc. Coninnu? Vol 149, No 3, June 2002

for each value of the signal-to-noise ratio, the performance
obtained with the uniform interleaver is achievable by at
least one random interleaver. However, [1 11 demonstrated,
by simulation, that the performance of some practical short
interleavers exceeds that suggested by the uniform inter-
leaver.

Under the assumption of a uniform interleaver, the
conditional transfer function for the turbo code is given
by [lo1

(9)

Equation (9) is obtained based on the assumption that, for a
given input weight, every output of the branch may be
appended to every output of the second branch with the
same probability. By substituting (9) in (7), we obtain
the transfer function of the turbo code, and hence the
coefficients {A,,:=} for all possible values of w and z.

The information obtained about the weight distribution
is used to find the bit error probability for the turbo code
[lo]:

where R, is the code rate, EhIN0 is the signal to noise ratio
(SNR) of the AWGN channel and D,,, is obtained from the
weight distribution according to:

4

For unpunctured systematic codes, the overall output
weight is equal to the sum of the input weight and the
parity weight. The information about the input weight and
the corresponding parity weight is fully contained in the
transfer function, T(W, 2). Unfortunately, this is not the
case for punctured codes, which makes the task of finding
their weight distribution a tedious one.

A brief description of the algorithm required for the
evaluation of the transfer function of punctured turbo
codes follows. We treat separately the case of puncturing
parity bits and that of puncturing systematic (information)
bits.

Weight distribution of punctured turbo codes

4. I Puncturing parity bits
Let the frame size k be a multiple of the puncturing period
p . For illustration, let the puncturing period p = 4 and the
puncturing pattern be 1101. This means that the third
symbol in every sub-sequence of four symbols is punctured.
To compute the frame transition matrix F(W, Z), we
compute first the period transition matrix B, i t . the
transition matrix over one period,

B (W , Z) = A (W , Z) A (W , Z) A (W , l) A (W , Z) (12)

Setting the parity variable Z in the thrd matrix to '1'
indicates that the third bit is not transmitted.

In general, for puncturing, period p and arbitrary
puncturing vector P' (where P' is a vector corresponding
to the ith parity row of the puncturing matrix P), we form
the period transition matrices for the two parity branches

134

B,, and Bc, using the matrix multiplication:

i =
P

B , (w, Z) = JJ A (w, z p q
j= 1

Where P'(J is thejth element of the vector P'.

computed as the (k/p)th power of B(W, Z) , i.e.
The frame transition matrix F(W, z) can then be

F c , (W , Z) = B g p (W , Z) i = 1 , 2 (14)

The above procedure can be used to calculate the weight
distribution for different puncturing patterns of each
constituent code. The resultant matrices are used, as
outlined in Section 3, to find the conditional transfer
functions, which are then substituted in (9) to find the
composite transfer function of the turbo code under
uniform interleaving.

4.2 Puncturing systematic bits
When systematic bits are punctured, the weight of the
output systematic branch, say y , may be different from the
weight of the input sequence, w. Unfortunately, the
procedure to find the transfer function, explained in Section
3, does not have the capability to keep a record of both.

For an input sequence of length k and Hamming weight
w, if A4 bits in a period of p are punctured then the total
number of punctured bits is (kMly). The punctured
systematic sequence weight y is then bounded as

w- (k M / P) 5 y 5 w (15)
The probability p (y I w) of producing a weight-y systematic
output by puncturing a weight-w input sequence is often
found in a probabilistic way. It is usually assumed that all
patterns of kM/p punctured bits out of the k bits are
possible, and that they are all equiprobable. Based on these
assumptions, it follows that

In addition to being probabilistic, the above technique does
not account for the particular puncturing pattern nor the
particular CC used. In the following Section, we present a
modified algorithm for finding the transfer function, which
is free from these shortcomings.

5 Modified transfer function of punctured codes

As mentioned above, when puncturing is applied to the
systematic sequence, the weight of the output systematic
branch may be different from the weight of the input
sequence. Hence, the overall output weight does not equal
the sum of the input and parity check weights. This
necessitates keeping a separate record for each.

To accomplish this task we will modify the state diagram
by appending the variable Y to each branch. The power of
Y can be 0 or 1 depending on whether the systematic bit is
punctured or not. The resultant modified transfer function
and the conditional transfer function are denoted by T(W,
2, Y) and T,,, (Z, Y), respectively.

The modified conditional transfer function is represented
by the following summation:

The systematic branch is considered to be a part of the first
constituent code. Therefore only the transition matrix of the
first constituent code has to be modified to account for the

IEE Proc. Co,iiii?uii. Vol. 149, No. 3, Jiirir 2002

variable Y. The variable Y is introduced in the transition
matrix by replacing W by WY.

To illustrate the above procedure, let us find the transfer
function of the (1,5/7,5/7) code under puncturing. For the
(1,5/7) constituent code the modified transition matrix will
be

(1 0 W Y o \
O 1 (18) A (W , Z , Y) = (o w o z

W Y 0 1

\ o 2 0 W Y)

Consider the puncturing matrix,

P = [; ; p] (19)

The transition matrix over one period for the first
constituent code is

Bc, (w. z , Y) = A (w, z, Y) A (w, 1, Y) A (w, z , 1) (20)

Bc , (W,Z) = A (W . I) A (W , Z) A (W , Z) (21)
whereas that for the second constituent code, C2, is

The transition matrices for C, and C2 over a frame of length
k are then calculated as

Fc, (W , Z , Y) = Bzp(W . Z , Y) (22)

F c , (W , Z) = B g q W , Z) (23)
The resultant Fc, and Fc2 are used to calculate the
composite transfer function using the assumption of a
uniform interleaver and the relation in (9)

In fact, the variables Z and Y in (22) and (23) can be
replaced by the variable H. This simplification is based on
the observation that from this point onward the contribu-
tion of the punctured systematic and parity branches to the
overall output weight need not be distinguished. This will
simplify the calculation of the frame transition matrix Fcl,
which will then be a function of two variables W and H,
with the power of the variable H carrying the overall output
weight for the first CC.

The above approach allows the exact determination of y
for a given w, and hence is referred to as deterministic. The
next Section shows that the deterministic approach leads to
a more accurate evaluation of the weight distribution of
turbo codes that the probabilistic approach.

6 Deterministic approach versus probabilistic
approach

Let LIS start by a simple example for demonstration.
Consider the popular (7,4) Hamming code. All the code-
words resulting from an input of weight two (w = 2) are
shown in Table 1. The first four bits are the systematic bits
bo b, b2 b3. From the Table it is clearly seen that

T2(Z) = 3 2 + 32’ (24)
For a turbo code built of two (7,4) Hamming codes and the
uniform interleaver, the conditional transfer function is
given by

= 1 .5Z2 + 3Z3 + 1 .5Z4 (25)
Note that the sum of the coefficients of Z is 6, which is the
total number of codewords with input weight two.

If the two systematic bits bl and b3 are punctured, then
the output conditional transfer function for the punctured

IEE Proc. Cornriiun. Vol. 149, No. 3, June 2002

Table 1:
(7,4) Hamming encoder

Codewords as a result of weight-two input for

Systematic Parity Polynomial

bo bi b2 b3 b4 bs bs

representation

1 0 1 0 0 0 1 z
0 1 1 0 1 0 0 2
0 0 1 1 0 1 0 z
0 1 0 1 1 1 o , z 2

1 0 0 1 0 1 1 z ~
1 1 0 0 1 0 1 z 2

Conditional distribution (3Z+3Z2)

code can be calculated using either the probabilistic or the
deterministic approaches. For the probabilistic approach,
(1 6) yields:

p (y = O~IV = 2) = 1/6, p (y = llw = 2)
= 2/3 and p (y = 2 / w = 2) = 1/6 (26)

The output conditional transfer function for the punctured
turbo code is then given by

T?.rc(Z, Y) = (1.5Z2 + 3Z3

+ 1.5Z4) (i i -+-Y+!Y’) 6 (27)

If the punctured bits were bo and b2 instead of 6, and 63 the
same result would be obtained. Moreover, the effect of
puncturing, represented by the second bracket, is totally
isolated from the first bracket, which is determined by the
specific code used. This means that the amount of
degradation in performance due to puncturing is indepen-
dent of the specific code used. Both observations represent
weaknesses of the probabilistic approach.

Let us now find the output conditional transfer function
using the deterministic method developed in this paper.
Table 2 traces the effect of puncturing bits b, and b3 on the
weight distribution of the code. After puncturing, the
output conditional transfer function for the first constituent
code is given by

T2,c, (Z , Y) = 2YZ + Z2 + 2 E 2 + Y 2 Z (28)

Table2: Codewords as a result of input weight 2 for
punctured (7.4) Hamming code when b, and & are
punctured

Systematic Parity Polynomial

b,, b, 9 & b4 b5 b6 representation

1 0 1 0 0 0 1 Y2Z
O l l O l O O M
0 0 1 1 0 1 0 YZ
0 1 0 1 1 1 0 2 2

1 0 0 1 0 1 1 YZZ
1 1 0 0 1 0 1 YZZ

Conditional
distribution

Y 22 i 2 MiZ2+2 YZ2

135

Tables Conditional weight distribution of U,4) Ham-
ming turbo code using the probabilistic and deterministic
techniques

~ _ _ _ ~

Weight j 0 1 2 3 4 5 6 Sum

Probabilistic 0 0 0.25 1.5 2.5 1.5 0.25 6
Deterministic 0 0 0 1.5 3 1.5 0 6

and that for the second constituent code is given by

T2,CZ(Z, Y) = 32 + 3z2 (29)
The conditisnal transfer function of the turbo code is given
bY

T2 e, x T2 e,
6 T2Tc =

= l .5H3 -t- 3H4 + 1.5H5 (deterininistic) (30)
whereas that obtained by the probabilistic approach is

7 ' 2 , ~ = 0.25H2 + 1.5H3 + 2.5H4 + 1.5H5

f 0.25H6 (probabilistic) (31)
In obtaining (30) and (31) every Y and Z was replaced by
H. The differences between the two methods are reported in
Table 3 . The deterministic method shows that the minimum
output weight generated from a weight-2 input is not less
than three, irrespective of the interleaver used, whereas the
probabilistic method produces some codewords of weight 2.

It is worth noting that if bo and b2 are punctured instead
of bi and b3 the deterministic approach yields a different
weight distribution. This is illustrated in Table 4. Therefore,
unlike the probabilistic method, the deterministic method is
sensitive to the puncturing pattern.

Now let us turn to the (1,5/7,5/7) turbo code. The
systematic sequence is punctured according to the vector
[I 1 01. Table 5 shows Om, whch is a measure of the weight
distribution of the code defined in (I l) , up to the weight
rn = 18 using the two techniques. In particular, the results
of the deterministic approach show that the minimum
distance of the code cannot be less than 6, whereas the
probabilistic approach allows the presence of codewords of
weights 4 and 5. Also, the results of the deterministic
approach show that odd-weight codewords do not exist,

Table& Codewords as a result of input weight 2 for
punctured (7,4 Hamming code when and & are
punctured

Systematic Parity Polynomial

bo bl 9 bj b4 4 & representation

1 0 1 0 0 0 1 z
O 1 1 O 1 O O M
0 0 1 1 0 1 0 z ~
0 I O 1 1 1 0 Y2Z*
1 0 0 1 0 1 1 YZ2
1 1 0 0 1 0 1 YZ*

Conditional
distribution

z+ M+Z2+ Y 2 2 *+2 YZ =

Table 5:
using the probabilistic and the deterministic techniques

0, for the (1,5/7 3/71 turbo code and P = [I 101

Codeword
weight m

D, [probabilistic] 0, [deterministic1

-

3
4
5
6
7
8
9
10
1 1
12
13
14
15
16
17
18

0
0.00001758369
0.0001 0925460
0.00032662980
0.00080264 170
0.00390303700
0.01 206679000
0.01856358000
0.02618730000
0.03786333000
0.0491 2956000
0.07454436000
0.10620620000
0.17585560000
0.28859980000
0.51055000000

0
0
0
0.0004947929
0
0.0097513440
0
0.0366604400
0
0.0728424400
0
0.1423494000
0
0.3456495000
0
1.0028360000

whereas the probabilistic approach fails to detect this
structural information.

Fig. 3 shows a comparison between the bounds obtained
using the probabilistic method and the deterministic method
for the (1,5/7,5/7) turbo code. We considered two punctur-
ing patterns of the systematic sequence. In the first case, one
systematic bit is punctured in a period of two (A4 = 1,
p = 2), whereas in the second case, one systematic bit is
punctured in a period of three (A4 = 1, p = 3). The Figure
shows that, although both bounds are comparable at low
SNR (waterfall region), the deterministic bound is getting
significantly tighter at hgh SNR (flattening region). This
observation is consistent for both puncturing patterns. The
reason behind t h s behaviour can be explained by noting
that, at high values of SNR, the code performance is
dominated by the minimum distance of the code, which is
underestimated by the probabilistic approach.

[r
w m

loLi5 1
0 2 4 6 8 10

Eb IN,, dB

Fig. 3
probchhtic and the deterministic techniques

Comparison of the upper bounds on the BER using the

IEE h o c Cornmun Vol 149 NO 3, June 2002 136

7 Puncturing patterns

In principle, puncturing can be applied to information bits
and/or parity bits. However, it is reported that puncturing
systematic bits may have a drastic effect on the code
performance [12]. Therefore, it is advisable to avoid
puncturing systematic bits and confine puncturing to the
parity bits.

The fact that the two parity sequences play an identical
role at the decoder suggests that puncturing should be
distributed equally between the parity branches. It is also
intuitive to suggest that the punctured bits in any sequence
be well scattered, as adjacent puncturing destroys the
structure of the code.

To test the above conjectures, four puncturing matrices
are investigated:

P I = 0 1 0 1 P ? = = 1 1 0 1 [: I : 11 [I I : I] (32) [: 1 : :] [: : I I] P3= 1 1 0 0 Pq= 1 1 1 1

All four matrices have a period of four (p = 4) and a total
number of punctured bits equal to 4, thus ensuring a fair
comparison between them with respect to the resultant code
ratio. In PI , puncturing is equally distributed between the
two panty branches and maximally scattered within each
branch. In P2, puncturing is not equally distributed,
whereas in P3 it is not well scattered. The puncturing
matrix P4 is the extreme case of puncturing the second
parity sequence completely and leaving the first parity
sequence intact. In fact, this puncturing pattern transforms
a turbo code to a normal convolutional code.

Fig. 4 shows the performance of the turbo code under the
puncturing matrices. Clearly, Pi has the best performance,
Pz and P3 are slightly inferior to P I but P4 is much worse.
These results support the previous conjectures.

The procedure for formulating the block transition
matrix requires computing the transition matrix over one
period. The transition matrix, B, over one period is

loo

lo-’

1 o-2
a: !A
m

1 o - ~

0 0.5 1.0 1.5 2.0 2.5 3.0

€bIN0

Fig. 4 Pevformunce of’ turbo code under d#ermt puncturing
urrungetnents of’ the purity sequence
See (32) for definitions of puncturing matrices

computed as in (13). Multiplying B by itself (klp) times
results in the required transition matrix over the entire
frame. Owing to the grouping property of matrix multi-
plication, cyclic shifts will not affect the overall result,
assuming the sequence is relatively long. Noting that cyclic
shifting of columns does not change the puncturing pattern,
with respect to the two conditions stated in the previous
Section, one can also arrive at the same conclusion. The
independence of the performance to cyclically shfting the
columns of the puncturing matrix is venfied by simulation,
as shown in Fig. 5. P5 is obtained from PI by one cyclic
shift of columns.

1 1 1 1
PI= 0 1 0 1 P g = 1 0 1 0 [J [::::I (33)

Fig. 5 shows that PI and Ps have essentially the same
performance. This property has been tested for different
interleavers and the behaviour was found to be consistent.

It should be noted that permutation of columns other
than cyclic shifting might affect the performance, as it might
modify the scattering of punctured bits. In Fig. 3 4 P 3 is
obtained from Pi by interchanging columns 1 and 4. Fig. 4
shows that the two patterns yield a different performance.
Although the difference is not great, it will be more
pronounced as the puncturing period increases.

The results of this Section lead to the following set of
guidehnes for constructing a good puncturing matrix:
puncturing systematic bits should be avoided; puncturing
should be applied equally to parity sequences; within every
parity sequence, punctured bits should be scattered as much
as possible and puncturing matrices obtained by cyclically
shifting the columns have essentially the same performance.

loo i
10-1 -

lo-z -
m

-

1 o - ~

lo-z -
m

0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 5 Perfortnunce under coluinn pesmutations OIZ the punctmring
matrix
See (33) for definitions of puncturing matrices

8 Conclusion

A modified technique for the evaluation of the transfer
function of punctured turbo codes has been developed. The
modified technique provides a more accurate enumeration
of the weights and, consequently, a tighter upper bound on
the bit-error rate. It also permits the study and comparison
of different puncturing patterns. Our investigation leads to a
set of useful hints in the design of a good puncturing matrix.

137 IEE Proc. Comriiun. Vol. 149, No. 3, June 2002

We believe that the techniques and findings of this paper are
useful for any further research on punctured turbo codes.

9 Acknowledgment

The authors would like to thank KFUPM for supporting
this research.

10 References

1 CAIRE, G., and BIGLIERI, E.: ‘Parallel concatenated codes with
unequal error protection’, IEEE Truns. Conanun., 1998, 46, (5) , pp.
565-567
KIM, B., and KWON, S.: ‘A new soft handover scheme using
punctured turbo codes in the wideband CDMA system’. Proceedings
of the IEEE Conference on VTC, 2001, pp. 1420-1424
CHAN, W., GERANIOTIS, E., and NGUYEN, V.:,‘An adaptive
hybrid FECI ARQ protocol using turbo codes’. Proceedings of the 6th
ICUPC, 1997, Vol. 2, pp. 541-545

4 LAW, C.F., LAU, C., and KO, T.M.: ‘A modified adaptive FEC/
ARQ protocol using turbo codes with incremental redundancy
transmssion’. Proceedings of the IEEE conference on VTC, 1999,
pp. 1670-1674

2

3

5 ABOU-EL-AZM, A,, EL-FISHAWY, N., and MOHAMMED, F.:
‘Improving the transmission efficiency in the mobile communication
systems using turbo codes’. Proceedings of the IEEE conference on
VTC, 2000, pp. 1836-1843
CAIN, J.B., CLARK, G.C., and GEIST, J.M.: ‘Punctured convolu-
tional codes of rate (n-I)/n and simplified maximum likelihood
decoding’, IEEE Trans. If$ Theory, 1979, IT-20, pp. 79-100
HAGENAUER, J.: ‘Rate compatible punctured convolutional codes
(RCPC-codes) and their application’, IEEE Trcins. Comrmm., 1988,
36, pp. 389400
MO, F., KWATRA, S., and KIM, J.: ‘Analysis of puncturing
patterns for high rate turbo codes’. Proceedings of the Military
Communications Conference, 1999, pp. 547-550
BENEDETTO, S., GARELLO, R., and MONTORSI, G.: ‘A search
for good convolutional codes to be used in the construction of turbo
codes’, IEEE Trans. Conanun., 1998, 46, (9), pp. 1101-1105
BENEDETTO, S., and MONTORSI, G.: ‘Unveiling turbo-codes:
some results on parallel concatenated coding schemes’. IEEE Trcms.
In$ Theory, 1996, 42, (2), pp. 409428
BURR, A,, and WHITE, G.: ‘Comparison of iterative decoder
performance with union bounds for short frame turbo codes’, Ann.
Telecon?rnun., 1999, 54, (34) , pp. 20 1-207
BERROU, C., and GLAVIEUX, A,: ‘Near optimum-error correcting
coding and decoding: turbo-codes’, IEEE Trms. Cornrnun., 1996, 44,
pp. 1261-1271

138 IEE Proc. Coruniun. Vol. 149. No. 3, June 2002

